22MF	EPE15	SEMESTER VI											
PRER	EQUI	CATEGORY	L	Τ	P	C							
	РЕ	3	0	0	3								
COUR	SE OB	JECTIVES:											
1.	1. Analyzing the thermodynamic cycles used in power generation												
2.	Evaluati	Evaluating the merits of direct thermal energy conversion systems compared to conventional techniques											
3.	Analyzing the performance of fuel cells												
4.	Selectin	Selecting the best energy storage mechanism for any given application											
5.	Developing a mechanism for total energy recovery from a system adopting CHCP concept												
UN	IT I	ENERGY CONVERSION CYCLES		9	0	0	9						
Bell Co	leman,	Scuderi, Stirling, Ericsson, Lenoir, Atkinson, Stoddard and Kalina	cycle – Compariso	n wit	n Ran	kine	and						
Brayton	ı cycles.												
TINI	TI	DIDECT CONVEDSION OF THEDMAL TO ELECTRI	CAL ENEDCY	0	0	0	0						
UNI		DIRECT CONVERSION OF THERMAL TO ELECTRI	CAL ENERGY	9	U	U	9						
MHD -	Thermo	pelectric Converters – Thermoelectric refrigerator – Thermoelectri	c Generator – Ther	mioni	c con	vertei	с s —						
Ferro el	ectric co	nverter – Nemst Effect Generator – Thermo Magnetic Converter											
LINII'	тш	DIRECT CONVERSION OF CHEMICAL TO FLECTR	PICAL ENERCY	0	0	0	0						
		DIRECT CONVERSION OF CHEMICAL TO ELECTR	ICAL ENERGY	<u> </u>	U and ki	U	9 . of						
fuel cell	n . Dasi	s = performance of fuel cell = applications	alysis – uleilliodylla	inics a	ina ki	metic	\$ 01						
	. pro ce s												
UNI	TIV	ENERGY STORAGE SYSTEMS		9	0	0	9						
Batterie	s – type	s – working – performance governing parameters – hydrogen ener	gy – solar cells. End	ergy s	torage	e devi	ices						
for Mec	hanical	Energy, Electrical Energy, Chemical Energy, Thermal Energy.											
UNI	IT V	COMBINED HEAT, COOLING AND POWER PRODU	CTION (CHCP)	9	0	0	9						
Cogene	ration -	types - Configuration and thermodynamic performance of steam tur	bine cogeneration s	ystem	s – ga	s turb	oine						
cogener	ation sy	stems – reciprocating IC engines cogeneration systems – concept of	Polygeneration										
			Total	(45L)) • 45	Peri	ods						
			Total		<u>,, 10</u>	1 011	Jus						
TEXT	BOOK	S:											
1.	Archie.W.Culp, Principles of Energy Conversion, 2 ndEdition, McGraw-Hill Inc., 1991, New York												
2.	Kordesch Karl, and Günter R. Simader, Fuel Cell and Their Applications, Wiley 2006												
DEEE	DENG	20											
REFE		15: Common Demonstra English Commonity Terrenticity and Star	Tll 0 I	7	<u></u>		1						
1	Bent Sorensen, Kenewable Energy Conversion, Transmission, and Storage Technology & Engineering, Academic Press 2007												
2	Chai	Charles R. Russell, Elements of Energy Conversion, Permagon Press, 1967											
3	Hart	A.B. and Womack, G.J., Fuel Cells: Theory and Application, Prent	ice Hall, 1989										
4	Kett	ari, M.A., Direct Energy Conversion, Addison-Wesley, 1997											
5	Yog	Goswami, D. and Frank Kreith, Energy Conversion, Second Edition	on, Science, 2017.										
E-REF	FEREN	CES:											

 1.
 https://energyeducation.ca/encyclopedia/Energy_conversion_technology

 2.
 https://ioe.iitm.ac.in/program/energy-systems/

COUI Upon c	Bloom Taxonomy Mapped		
<i>CO1</i>	Analyze the thermodynamic cycles used in power generation	Analyze	
<i>CO2</i>	Evaluate the merits of direct thermal energy conversion systems compared to conventional techniques	Apply	
<i>CO3</i>	Analyze the performance of fuel cells	Analyze	
<i>CO4</i>	Select the best energy storage mechanism for any given application	Understand	
<i>CO</i> 5	Develop a mechanism for total energy recovery from a system adopting CHCP concept	Understand	

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	2	2	1	1	0	1	0	0	0	0	0	2	1	1
CO2	3	2	2	1	1	1	0	0	0	0	0	0	2	1	1
CO3	3	3	3	1	1	1	1	0	0	0	0	0	2	1	1
CO4	2	2	3	1	1	1	1	0	0	0	0	0	2	1	1
CO5	2	2	2	2	1	1	1	0	0	0	0	0	2	1	1
Avg	2.6	2.2	2.4	1.2	1.0	0.8	0.8	0.0	0.0	0.0	0.0	0.0	2	1	1
3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)															