PRERI		22CEPE03 SUSTAINABLE AND GREEN BUILDING TECHNOLOGY											
	EQUIS	PE	Credit		3								
Constru	iction N	Materials and Technology, Environmental Science		L	Т	P	TH						
and Eng			Hours/Week	3	0	0	3						
Course	Learr	ning Objectives					1						
1 T	o Know	v various aspects of green buildings											
2 T	o Use d	Use different steps involved in measuring environmental impact assessment.											
3 T	o Relat	elate the construction of green buildings with prevailing energy conservation policy and regulations.											
4 T	o Know	w and identify different green building construction materials.											
5 T	o Learn	n different rating systems and their criteria											
Unit	I	INTRODUCTION TO GREEN BUILDING AND DES	SIGN FEATURES	9	0	0	9						
construc	tion tec	strategies, Landscaping, building form, orientation, bu chniques, roofs, walls, fenestration and shaded finishes, a during construction.											
Unit	II	ENERGY AUDIT AND ENVIRONMENTAL IMPAC	CT ASSESSMENT	9	0	0	9						
 Meaning	g, Neces	ssity, Procedures, Types, Energy Management Programs.											
		IA regulations, Steps in environmental impact assessment clearance for civil engineering projects.	nt process, Benefits	of EIA,	Limita	tions o	f EIA						
Unit 1	Ш	ENERGY AND ENERGY CONSERVAT	TION	9	0	0	9						
Renewa	ble Ene	ergy Resources: Solar Energy, Wind Energy, Ocean Energy	y, Hydro Energy, Bio	mass E	nergy.								
		Energy Resources: Coal, Petroleum, Natural Gas, Nucl n, Biofuels.	lear Energy, Chemic	al Sour	rces of	Energy	, Fue						
Cells, H													

Energy-saving houses, Green House, Passive house, Passive house construction, Low-energy house, Zero-energy house, Energy consulting, Energy efficiency.

Unit IV	PRINCIPLES AND PLANNING OF GREEN BUILDING	9	0	0	9
					1

Features: Salient features of Green Building, Environmental design (ED) strategies for building construction.

Process: Improvement in environmental quality in civil structure Materials: Green building materials and products-Bamboo, Rice husk ash concrete, plastic bricks, Bagasse particle board, Insulated concrete forms. reuse of waste material-Plastic, rubber, Newspaper wood, Non Toxic paint, green roofing.

Housing modernization and management (building and construction safety, energy efficiency in housing, Property Refurbishment / Upgrade / Modernization / Renovation - Modular kitchens, bathrooms

Unit V	RATING SYSTEM	9	0	0	9
--------	---------------	---	---	---	---

Introduction to (LEED) criteria, Indian Green Building council (IGBC) Green rating, Green Rating for Integrated Habitat Assessment. (GRIHA) criteria Heating Ventilation Air Conditioning (HVAC) unit in green Building Functions of Government organization working for Energy conservation and Audit(ECA) - National Productivity council (NPC) Ministry of New and Renewable Energy (MNRE) Bureau of Energy efficiency (BEE) -BER (Building Energy Rating) - Certificates – Plumbing and Electrical to heating efficiency

	Total= 45 Periods
Te	ext Books:
1	Kibert, C.J., Sustainable construction: Green Building design and Delivery, John Wiley Hobouken, NewJersey, 3 rd Edition, 2012.
2	Chauhan, D S Sreevasthava, S K., Non-conventional Energy Resources, New Age International Publishers, NewDelhi, 4 th Edition, 2021
Ref	ference Books:
1	O.P. Gupta, Energy Technology, Khanna Publishing House, New Delhi
2	Jagadeesh, K S, Reddy Venkatta Rama &Nanjunda Rao, K S., Alternative Building Materials and Technologies, New Age International Publishers, Delhi.
3	Sam Kubba., Handbook of Green Building Design and Construction, Butterworth- Heinemann.
4	Means R S, Green Building - Project Planning and Cost Estimating, John Wiley &Sons
5	Sharma K V, Venkataseshaiah P., Energy Management and Conservation, IK International.

Course Outcomes:								
Upon completion of this course, the students will be able to:								
CO1	Understand the concepts of Green Building and its Design Features.							
CO2	Assess Environmental Impacts.	Evaluate						
CO3	Explain the concept of Energy and Energy Conservation.	Understand						
CO4	Discuss the Principles and Planning of Green Building.	Understand						
CO5	Summarize the green Building Functions in various organizations.	Understand						

COURSE ARTICULATION MATRIX

COs/	DO1	DO2	DO2	DO 4	DO.5	DO.	DO7	DO0	DO0	DO10	PO11	DO12	DCO1	DCO2	DCO2
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	1	1	2	3	-	-	1	2	1	2	-	-
CO2	-	1	1	2	-	-	-	1	-	2	-	-	1	3	-
CO3	-	-	3	-	3	-	-	-	-	2	2	-	-	-	-
CO4	1	-	-	-	3	-	-	-	-	2	2	-	-	-	-
CO5	1	1	2	3	3	-	-	-	-	3	2	-	-	3	-
Avg	1	1	2	2	2.5	2	3	1	-	2	2	1	1.5	3	-
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														