22ECPE615	VLSI PHYSICAL DESIGN		SE	MES	STER VI							
PRE-REQUI	SITE:	CATEGORY	PE	Cre	edit	3						
1. VLSI design			L	Т	Р	TH						
1.		Hours/Week	3	0	0	3						
VLSI design			3	U	U	3						
Course Objec												
	d the concepts of Physical Design Process such as partitioning, Floor pla			ing.								
	e concepts of design optimization algorithms and their application to ph											
	erstand the concepts of simulation and synthesis in VLSI Design Automation 🗆 Formulate CAD design problems usin											
algorithmi	c methods.											
Unit I I	S	9	0	0	9							
Verification me	tomation tools- algorithms and system design. Structural and logic des thods. Design management tools. AYOUT COMPACTION, PLACEMENT AND PARTITION		9	0	0	9						
Layout compac	tion, placement and routing. Design rules, symbolic layout. Applica constrained graph compaction. Circuit representation. Wire ler	tions of compaction	. Form Place									
Unit III F	LOOR PLANNING AND ROUTING		9	0	0	9						
	and routing- floor planning concepts. Shape functions and floor pla g, global routing and its algorithms.	nning sizing. Loca	l routir	ng. Ar	ea ro	uting						
Unit IV S	IMULATION AND LOGIC SYNTHESIS AND VERIFICAT	ION	9	0	0	9						
	logic synthesis- gate level and switch level modeling and sim DD principles, implementation, construction and manipulation. Two levels		to coi	nbina	tional	logi						
Unit V H	IGH-LEVEL SYNTHESIS		9	0	0	9						
	hesis- hardware model for high level synthesis. Internal rep scheduling. Scheduling algorithms. Aspects of assignment. High leve	resentation of input l transformations.	algorit	nms.	Alloc	ation						
		Tot	tal (45	L)= 4	5 Per	riod						

Text	Text Books:							
1.	S.H. Gerez, "Algorithms for VLSI Design Automation", John Wiley (India), 2006.							
2.	N.A.Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer, 2012.							
Refe	Reference Books:							
1.	S.M. Sait, H. Youssef, "VLSI Physical Design Automation", Cambridge India, 2010.							
2.	M.Sarrafzadeh, "Introduction to VLSI Physical Design", McGraw Hill (IE), 1996.							
3.	Giovanni De Micheli, "Synthesis and Optimization of Digital Circuits", McGraw Hill, 2017							
4.	Andrew B. Kahng and Jens Lienig "VLSI Physical Design: From Graph Partitioning to Timing Closure", Springer, 2011							
E-Re	E-References:							
1.	https://nptel.ac.in/courses/106105161							
2.	https://www.vlsi-expert.com/p/physical-design.html							
3.	https://www.academia.edu/36687882/VLSI Design smd154 Physical design back end							

Course Upon con	Bloom's Taxonomy Mapped	
CO1	Know to place the blocks and to partition the blocks while designing the layout for IC.	L2
CO2	Solve the performance issues in circuit layout.	L3
CO3	Analyze physical design problems and Employ appropriate automation algorithms for partitioning, floor planning, placement and routing	L4
CO4	Decompose large mapping problem into pieces, including logic optimization with partitioning, placement and routing	L3
CO5	Students are able to analyze circuits using both analytical and CAD tools.	L3

COURSE ARTICULATION MATRIX

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	1	1	1	1									1	1	
CO2	2	2	1	1									1		
CO3	2	2	1	1									1		
CO4	1	1	1	1		1							1	1	
CO5	3	3	1	1	3	1							1	2	3
Avg	1.8	1.8	1	1	0.6	0.4							1	0.8	0.6
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)															