22ECPE6	22ECPE613 AUTOMOTIVE ELECTRONICS										
PRE-REQU	JISITE:	ATEGORY	PE	Cr	edit	3					
		Hours/Week									
	3	0	0	3							
Course Obj	ectives:										
	ent will come to know the various stimuli that are to be measured in real life in										
	be able to select the right process or phenomena on which the sensor should de	pend on									
3. Aware o	f the various sensors available for measurement and control applications.										
Unit I	9	0	0	9							
Evolution of electronics in automobiles - emission laws - introduction to Euro I, Euro II, Euro IV, Euro V standards -											
	harat Standards. Charging systems: Working and design of charging circuit d	liagram – Alter	nators -	- requ	ireme	nts of					
starting syste	m – Starter motors and starter circuits.					1					
Unit II	FUNDAMENTALS OF VIRTUAL INSTRUMENTATION		9	0	0	9					
0	PROGRAMMING		-	Ŭ		-					
	ms: Ignition fundamentals - Electronic ignition systems - Programmed Ignit										
	ark Plugs. Electronic fuel Control: Basics of combustion - Engine fuelling and	l exhaust emiss	ions – I	Electro	onic co	ontrol					
	n – Petrol fuel injection – Diesel fuel injection.			1	1	1					
	SENSOR AND ACTUATORS	9	0	0	9						
	nciple and characteristics of Airflow rate, Engine crankshaft angular p		l effect								
	exhaust gas oxygen sensors - study of fuel injector, exhaust gas recirculation	actuators, ste	pper mo	otor ac	ctuato	r, and					
vacuum opera											
2 2 2	ENGINE CONTROL SYSTEMS		9	0	0	9					
	es for fuel control-engine control subsystems - ignition control methodologie										
	- block diagram of the engine management system. In vehicle networks: CA	N standard, for	rmat of	CAN	stand	lard –					
	zstems in modern automobiles.		-	-	-	-					
	CHASSIS AND SAFETY SYSTEMS		9	0	0	9					
	trol system - Cruise control system - electronic control of automatic trar										
electronic suspension system - working of airbag and role of MEMS in airbag systems - centralized door locking system - climate											
control of cars. Total (45L)= 45 Periods											
		То	tal (45	L)= 4	15 Pe	riods					

Text Books:									
1.	Tom Denton, "Automobile Electrical and Electronics Systems", Edward Arnold Publishers, 2000.								
2.	William B. Ribbens, "Understanding Automotive Electronics", 5th edition, Newnes Publishing, 2000.								
Reference Books:									
1.	Barry Hollembeak, "Automotive Electricity, Electronics & Computer Controls", Delmar Publishers, 2001.								
2.	"Fuel System and Emission controls", Check Chart Publication, 2000.								
3.	Ronald. K. Jurgon, "Automotive Electronics Handbook", McGraw-Hill, 1999.								
4.	S.Gupta and J P Gupta, "PC Interfacing for Data Acquisition and Process Control", Instrument Society of America, 1994.								
E-Ref	E-References:								
1.	https://nptel.ac.in/courses/107106088								
2.	https://www.youtube.com/watch?v=2losZDDqctU								
3.	https://www.renesas.com/in/en/application/automotive/chassis-safety								

Course Outcomes: Upon completion of this course, the students will be able to	Bloom's Taxonomy Mapped
---	-------------------------------

CO1	Know the importance of emission standards in automobiles			
CO2	Understand the electronic fuel injection/ignition components and their function			
CO3	Choose and use sensors and equipment for measuring mechanical quantities, temperature and appropriate actuators.			
CO4	Diagnose electronic engine control systems problems with appropriate diagnostic tools.	L3		
CO5	Understand the safety measures in chassis and vehicle.	L3		

COURSE ARTICULATION MATRIX

COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	3	3	1	3	3	3	2				3	3	3		2
CO2	3	3	2	3	3	3	2				3	3	3		2
CO3	3	3	3	3	3	3	2				3	3	3		2
CO4	3	3	2	3	3	3	2				2	3	3		2
CO5	3	3	2	3	3	3	2				3	3	3		2
Avg	3	3	2	3	3	3	2				2.8	3	3		2
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)															