2 To select 3 Toa war Unit I Introduction to select various schemat Response to impure Unit II Sensors for mecopressure in fluid strictive accelered Unit III Thermal sensors		ould depend on ontrol applications. world. Different fields of secharacteristics of sensors - z	ero, I an		P 0	3 TH 3
1 To know 2 To select 3 Toa war Unit I Introduction to select various schemat Response to impure Unit II Sensors for mecopressure in fluid strictive accelerate Unit III Thermal sensors	the various stimuli that are to be measured in real life in the right process or phenomena on which the sensor shows of the various sensors available for measurement and compared the various sensors available for measurement and compared the various sensors available for measurement and compared the various sensors and transducers. Need for sensors in the modern ices for active and passive sensors. Static and dynamic coulse, step, ramp and sinusoidal inputs. Environmental face	estrumentation. ould depend on control applications. world. Different fields of so characteristics of sensors - z	9 ensors ba	0 sed on	0	9
1 To know 2 To select 3 Toa war Unit I Introduction to select various schemat Response to impure Unit II Sensors for mecopressure in fluid strictive accelerate Unit III Thermal sensors	the various stimuli that are to be measured in real life in the right process or phenomena on which the sensor shows of the various sensors available for measurement and compared the various sensors available for measurement and compared the various sensors available for measurement and compared the various sensors and transducers. Need for sensors in the modern ices for active and passive sensors. Static and dynamic coulse, step, ramp and sinusoidal inputs. Environmental face	estrumentation. ould depend on control applications. world. Different fields of so characteristics of sensors - z	9 ensors ba	0 sed on	0	9
1 To know 2 To select 3 Toa war Unit I Introduction to select various schemat Response to impure Unit II Sensors for mecopressure in fluid strictive accelerate Unit III Thermal sensors	the various stimuli that are to be measured in real life in the right process or phenomena on which the sensor shows of the various sensors available for measurement and compared the various sensors available for measurement and compared the various sensors available for measurement and compared the various sensors and transducers. Need for sensors in the modern ices for active and passive sensors. Static and dynamic coulse, step, ramp and sinusoidal inputs. Environmental face	ould depend on ontrol applications. world. Different fields of secharacteristics of sensors - z	ensors ba zero, I an	sed on	·	,
2 To select 3 Toa war Unit I Introduction to select various schemat Response to impure Unit II Sensors for mecopressure in fluid strictive accelerate Unit III Thermal sensors	t the right process or phenomena on which the sensor shows of the various sensors available for measurement and compared the various sensors available for measurement and compared the various sensors and transducers. Need for sensors in the modern ices for active and passive sensors. Static and dynamic coulse, step, ramp and sinusoidal inputs. Environmental factors	ould depend on ontrol applications. world. Different fields of secharacteristics of sensors - z	ensors ba zero, I an	sed on	·	,
3 Toa war Unit I Introduction to svarious schemat Response to imp Unit II Sensors for mec pressure in fluic strictive accelered Unit III Thermal sensors	PROBLEM SOLVING sensors and transducers. Need for sensors in the modern ics for active and passive sensors. Static and dynamic coulse, step, ramp and sinusoidal inputs. Environmental factors	ontrol applications. world. Different fields of secharacteristics of sensors - z	ensors ba zero, I an	sed on	·	,
Unit I Introduction to savarious schemate Response to impure Unit II Sensors for mecopressure in fluid strictive accelerate Unit III Thermal sensors	PROBLEM SOLVING sensors and transducers. Need for sensors in the modern ics for active and passive sensors. Static and dynamic coulse, step, ramp and sinusoidal inputs. Environmental factors	world. Different fields of so	ensors ba zero, I an	sed on	·	,
Introduction to survivous schemat Response to impunit II Sensors for mec pressure in fluid strictive accelered Unit III Thermal sensors	sensors and transducers. Need for sensors in the modern ics for active and passive sensors. Static and dynamic coulse, step, ramp and sinusoidal inputs. Environmental fac	characteristics of sensors - z	ensors ba zero, I an	sed on	·	,
various schemat Response to imp Unit II Sensors for mec pressure in fluid strictive accelere Unit III Thermal sensors	ics for active and passive sensors. Static and dynamic coulse, step, ramp and sinusoidal inputs. Environmental fac	characteristics of sensors - z	ero, I an		the sti	1'
Sensors for mec pressure in fluid strictive accelere Unit III Thermal sensors	SENSORS FOR MECHANICAL SYSTEMS					
pressure in fluid strictive accelered Unit III Thermal sensors	SELECTED FOR MILECIPAL STOLENIS		9	0	0	9
Thermal sensors	hanical systems or mechanical sensors - Displacement - a ds - stress in solids. Typical sensors - wire and film st ometers, potentio metric sensors, LVDT					
	THERMAL AND OPTICAL SENSORS		9	0	0	9
photo transistor based), Hallide I Unit IV	s: temperature – temperature difference – heat quantity. clor pyrometry. Optical sensors: light intensity – wavele cCD, CMOS sensors. Radiation detectors: radiation is radiation detectors. MAGNETIC AND ACOUSTIC SENSORS	ength and color – light dependentensity, particle counter –	endent re Gieger	sistors, Muller	photo courte	odiode, er (gas
sonic sensors: Ir	s: magnetic field, magnetic flux density – magneto resist tensity of sound, frequency of sound in various media, va	arious forms of microphones	s, piezo e			
Unit V	APPLICATIONS OF ELECTRICAL AND SENSORS			0	0	9
Electrical senso power sensors. based sensors.	. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ors, (current transformers),				MEM

Text	Books:									
1.	Doebelin, "Measurement Systems: Application and Design", McGraw Hill Kogakusha Ltd,1983.									
2.	Julian W. Gardner, Vijay K. Varadan, Osama O. Awadelkarim "Microsensors, MEMS and Smart Devices", New York: Wiley, 2001.									
Refe	erence Books:									
1.	Henry Bolte, "Sensors – A Comprehensive Sensors", John Wiley.									
2.	Jocob Fraden," Handbook of Modern Sensors, Physics, Designs, and Applications", Springer,2014									
3.	Manabendra Bhuyan," Intelligent Instrumentation Principles and Applications", CRC Press,2017									
4.	Randy Frank," Understanding Smart Sensors", Second edition, Artech House, 2000.									
E-References:										
1.	https://onlinecourses.nptel.ac.in/noc22_ee50/preview									
2.	https://www.youtube.com/watch?v=1uPTyjxZzyo									
3.	https://nptel.ac.in/courses/115107122									

Course O Upon con	Bloom's Taxonomy Mapped	
CO1	Appreciate the operation of various measuring and control instruments which they encounter in their respective fields.	L2
CO2	Visualize the sensors and the measuring systems when they have to work in areas of interdisciplinary nature and also think of sensors and sensors systems when for a new situation they encounter in their career	L4
CO3	Identify and select the right process or phenomena on which the sensor should depend on.	L2
CO4	Know various stimuli that are to be measured in real life instrumentation.	L2
CO5	Apply all types sensor in various fields.	L3, L4

COURSE ARTICULATION MATRIX

COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	1	2											2		
CO2	2	2	1	1		2	1				3	1	3	2	
CO3	2	2	2	1			3				2		2		
CO4	3	2	3	2	3						1		1	2	
CO5	3	2	3		2	2	1				2	2	2		1
Avg	2.2	2	1.8	0.8	1	0.8	1				1.6	0.6	2	0.8	0.2
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)															