22EEHO310	ENERGY STORAGE SYSTEMS A	SEMESTER						
PREREQUIS	ITES	CATEGORY	PEC	Cr	edit	3		
Electrical Engi	ineering	Hours/Week	L 3	T P 0 0		Т Н З		
Course Object	tives:		5	U	0	5		
-	erstand the various types of energy storage tee	chnologies						
	yze thermal storage system.							
	yze different battery storage technologies.							
	el the Lithium-ion batteries.							
	y the various applications of energy storage s	vstems						
	NTRODUCTION	ystems.		9 () 0	9		
	nergy storage – Types of energy storage – 0	Comparison of energy stora		-		-		
	nergy storage technology in power system,							
technology in p		application outlook and en	anenges		igy su	orage		
	FHERMAL STORAGE SYSTEM			9 () ()	9		
	ge – Types – Modeling of thermal storage un	ite Simple water and real			, v	7		
	ater storage system – Modeling of phase ch					stora		
units –	tter storage system – Wodering of phase en	lange storage system – Simj	Jie units,	раске	u beu	storag		
	g porous medium approach – Use of TRNSY	70						
				9 () 0	9		
	ELECTRICAL ENERGY STORAGE	automas changing and d		-		-		
	concept of batteries – Measuring battery po							
	y, and safety issues. Types of batteries – Lea		, Zinc M	angan	ese dio	oxiae,		
	s – Mathematical modeling of Lead Acid bat	teries – Flow batteries.		0				
	LITHIUM-ION BATTERY MODELING	CT:1: 1 !		9 (-	9		
	arge and discharge temperature characteristi				coupl	ing		
	odeling and Optimization of Air Cooling Hea		-					
	ALTERNATE ENERGY STORAGE TEC			9 (9		
	percapacitors, Principles and methods - App		energy st	orage,	Conce	pt of		
Hybrid storage	e - Applications, Pumped hydro storage - Ap							
		Т	otal (45L	+0T)=	45 Pe	riods		
Text Books:								
Ibrahin	n Dincer and Mark A. Rosen, 'Ther	mal Energy Storage Sys	stems a	nd Ar	nlicati	ions'		
	Viley & Sons, 3rd Edition, 2021.	inal Energy Storage Sys	sterns a	ш л	phean	, 10115		
	Liu, Lei Zhang and Xueliang sun,	'Electrochemical technolo	gies for	ener	av st	orage		
	nversion', Wiley publications, 2 nd Volume se		gies ioi	chei	gy su	orage		
2 Junciu	Li, "Modeling and simulation of Lithium-io	n power bottomy themeal may		» C		020		
		in power battery thermal man	lagemen	, spri	nger, 2	2020.		
Reference Boo	oks:							
Lunard	dini.V.J, 'Heat Transfer in Cold (Climates' John Wiley	and S	ons	1981,	1st		
1. Edition		vincy	und C	0115	1701,	150		
2 Schmid		Thermal Energy Storag tion	ge and	Re	genera	tion',		
E-References:	• • •							
Drof C	Subhasish Basu Majumder, "Electrochemical	Energy Storage" NDTEL C	ourse					
		Linergy Storage, NPTEL C	ourse,					
nttps://	/nptel.ac.in/courses/113105102							
Prof. P	PK Das, "Energy conservation and waste heat	t recovery", NPIEL Course,						
	/nptel.ac.in/courses/112105221.	5,						

Course C	Bloom's Taxonomy		
Upon con	Mapped		
CO1	:	Understand different types of storage technologies.	L2: Understanding
CO2	:	Model a thermal battery energy storage system	L1: Remembering
CO3	:	Analyze the modeling of Lithium-ion batteries.	L4: Analyzing
CO4	:	Analyze the appropriate storage technologies for different applications.	L3: Applying
CO5	:	Explore the alternate energy storage technologies.	L2: Understanding

COURSE ARTICULATION MATRIX															
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	1											2		3
CO2	3		2										2		3
CO3	3		2										2		3
CO4	3		2										2		3
CO5		3				2		1					2		3
Avg	3	2	2	0	0	2	0	1	0	0	0	0	2	0	3
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

##