22EEHO303	ELECTRIC VEHICLE DESIGN, MEC CONTROL	SEMESTER											
PREREQUISIT	PEC	Credit 3		3									
Power Electronic	L	T	P	TH									
Power Electronic	3	0	0	3									
Course Objectiv	ves:												
1. To learn th	ne basics of EV and vehicle mechanics												
2. To know the	2. To know the EV architecture and to study the energy storage system concepts												
	model for batteries and to know the different ty		chargin	g me	thods	3							
4. To learn th	ne control preliminaries for DC-DC converters.												
UNIT I INT		9	0	0	9								
	IEP and BSFC, Vehicle Fuel Economy, Em												
	ons, Comparison of Internal Combustion En	gine and Electric Vo	ehicle, F	Revie	w of	`light-,							
·	avy-duty all-electric vehicles.												
	ECTRIC VEHICLES AND VEHICLE MEC		9	0	0	9							
	es (EV), Hybrid Electric Vehicles (HEV),		ompariso	ns c	of E	V with							
	ion Engine vehicles- Fundamentals of vehicle n			1	1								
	TTERY MODELING, TYPES AND CHARC		9	0	0	9							
	ectric and Hybrid Vehicles - Battery Basi												
	-Cadmium Battery - Nickel-Metal-Hydride (N												
	ir Battery, Sodium-Sulphur Battery, Sodium												
	Batteries. Battery Modelling, Electric Circuit	Models. Battery P	ack Man	agen	nent,	Battery							
Charging. UNIT IV CO	NTROL PRELIMINARIES		9	0	0	9							
	Preliminaries - Introduction - Transfer Functi	ions – Rode plot ans	1 -	_	"								
	stems - Stability - Transient Performance-												
	Phase margin study-open loop mode.	10 mor transfer funct	1011 101	5008									
	NTROL OF AC MACHINES		9	0	0	9							
	eference frame theory, basics-modeling of in	duction and synchro	nous ma	_	1 "	-							
	ontrol- Direct torque control.	,			_								
	1	Tota	al (45L+	0T) =	= 45]	Periods							

Reference Books:									
1.	Electric and Hybrid Vehicles, Design Fundamentals, Third Edition, Iqbal Husain, CRC Press, 2021.								
2.	Power Electronic Converters,: Dynamics and Control in Conventional and Renewable Energy								
۷.	Applications, Teuvo Suntio, Tuomas Messo, Joonas Puukko, 1st Edition, Wiley - VCH.								
3.	Ali Emadi, Mehrdad Ehsani, John M.Miller, "Vehicular Electric Power Systems", Special Indian								
Edition, Marcel dekker, Inc 2003, 1st Edition.									
4.	C.C. Chan and K.T. Chau, 'Modern Electric Vehicle Technology', OXFORD University Press, 2001, 1st								
4.	Edition.								
5.	Wie Liu, "Hybrid Electric Vehicle System Modeling and Control", Second Edition, John Wiley & Sons,								
J.	2017, 2 nd Edition.								
6.	Dynamic Simulation of Electric Machinery using MATLAB, Chee Mun Ong, Prentice Hall,1997, 1st								
0.	Edition.								
7.	Electrical Machine Fundamentals with Numerical Simulation using MATLAB/ SIMULINK, Atif Iqbal,								
7.	Shaikh Moinoddin, Bhimireddy Prathap Reddy, Wiley, 2021, 1st Edition								

Course O	Bloom's Taxonomy				
Upon completion of this course, the students will be able to:			Mapped		
CO1	:	To describe the concepts related with EV, HEV and to compare the	L2: Understanding		
		same with internal combustion engine vehicles			
CO2	:	To find gain margin & phase margin for various types of transfer	L5: Evaluating		
		functions of boost converter			
CO3	:	To demonstrate the Control of A.C Machines	L3: Applying		
CO4	:	To explain the concepts related with batteries and parameters of battery	L4: Analyzing		
CO5	:	To module the battery and to study the research and development for	L6: Creating		
		batteries	Lo. Creating		

COURSE ARTICULATION MATRIX															
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3								1	2		2	3		3
CO2	3								1	2		2	3		3
CO3	3						3		1	2		2	3		3
CO4	3						3		1	2		2	3		3
CO5	3						3		1	2		2	3	2	3
Avg	3	0	0	0	0	0	3	0	1	2	0	2	3	2	3
3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)															