22EEHO103	HO103 POWER SYSTEM STATE ESTIMATION AND SECURITY CONTROL SEM											
PREREQUIS												
	ion, Transmission and Distribution System; Power		L	Т	P		TH					
System Analys	-	Hours\Week	3	0	0		3					
Course Object	ives:			1								
1. To acqui	To acquire fundamental knowledge on power system state estimation.											
	liarise on network observability analysis.											
	o get conceptual aspects in power system state estimation and strategies to enhance the secure power											
system of		C				•						
UNIT I	INTRODUCTION			9	0	0	9					
	n- Energy management system- SCADA system- Ener											
	pts of reliability, security and stability - State transition		rategies-	Data	acqu	uisi	itio					
	alation techniques, MODEMS, Power line carrier comr	nunication.										
UNIT II	9	0	0	•								
	POWER SYSTEM STATE ESTIMATION			/	v	•	9					
Static state est	mation: Active and reactive power bus measurements			ts - I	Line		ren					
Static state est measurements	mation: Active and reactive power bus measurements - Bus voltage measurements - Measurement model an	d assumptions - W	eighted	ts - I least	Line squa	re s	ren					
Static state estimeasurements estimation algo	mation: Active and reactive power bus measurements – Bus voltage measurements - Measurement model an prithm- Maximum likelihood estimation - Decoupled	d assumptions - W	eighted	ts - I least	Line squa	re s	ren					
Static state esti measurements estimation algo decoupled state	mation: Active and reactive power bus measurements – Bus voltage measurements - Measurement model an prithm- Maximum likelihood estimation - Decoupled estimation.	d assumptions - W	eighted	ts - I least	Line squa	re s	ren					
Static state estimation algorization state stimation algorization decoupled state UNIT III	mation: Active and reactive power bus measurements – Bus voltage measurements - Measurement model an prithm- Maximum likelihood estimation - Decoupled estimation. NETWORK OBSERVABILITY ANALYSIS	d assumptions - W formulation of W	eighted LS state	ts - I least estin	Line squa natio	re s n-	rren stat Fas					
Static state estimation algored estimation algored estimation algored state UNIT III Tracking state	mation: Active and reactive power bus measurements – Bus voltage measurements - Measurement model an orithm- Maximum likelihood estimation - Decoupled estimation. NETWORK OBSERVABILITY ANALYSIS estimation: Algorithm - Computational aspects – 1	d assumptions - W formulation of W Measurement redu	Veighted LS state	ts - I least estin 9 - Ac	Line squa natio	re s n- 0 cy	rren stat Fas 9 an					
Static state estimation algored decoupled state UNIT III Tracking state variance of me	mation: Active and reactive power bus measurements – Bus voltage measurements - Measurement model an orithm- Maximum likelihood estimation - Decoupled estimation. NETWORK OBSERVABILITY ANALYSIS estimation: Algorithm - Computational aspects – I asurements - Variance of measurement residuals- Deter	d assumptions - W formulation of W Measurement redu	Veighted LS state Indancy on and su	ts - I least estin 9 - Ac	Line squa natio 0 ccura ssion	re s n- 0 cy of	rren stat Fas 9 and bad					
Static state estimation algored decoupled state UNIT III Tracking state variance of me measurements	mation: Active and reactive power bus measurements – Bus voltage measurements - Measurement model an orithm- Maximum likelihood estimation - Decoupled estimation. NETWORK OBSERVABILITY ANALYSIS estimation: Algorithm - Computational aspects – I asurements - Variance of measurement residuals- Detec - Pseudo measurements- Virtual measurements-	d assumptions - W formulation of W Measurement redu ection, identificatio External system	Veighted LS state Indancy on and su	ts - I least estin 9 - Ac	Line squa natio 0 ccura ssion	re s n- 0 cy of	rren stat Fas 9 and bad					
Static state estimation algored decoupled state UNIT III Tracking state variance of me measurements	mation: Active and reactive power bus measurements – Bus voltage measurements - Measurement model an prithm- Maximum likelihood estimation - Decoupled estimation. NETWORK OBSERVABILITY ANALYSIS estimation: Algorithm - Computational aspects – I asurements - Variance of measurement residuals- Dete - Pseudo measurements- Virtual measurements- Observability analysis using phasor measurement units	d assumptions - W formulation of W Measurement reduction, identification External system	Veighted LS state Indancy on and su	ts - I least estin 9 - Ac	Line squa natio 0 ccura ssion	re s n- 0 cy of	rren stat Fas 9 and bad					
Static state esti- measurements estimation algo decoupled state UNIT III Tracking state variance of me measurements observability - UNIT IV	mation: Active and reactive power bus measurements – Bus voltage measurements - Measurement model an prithm- Maximum likelihood estimation - Decoupled estimation. NETWORK OBSERVABILITY ANALYSIS estimation: Algorithm - Computational aspects – I asurements - Variance of measurement residuals- Dete - Pseudo measurements- Virtual measurements- Observability analysis using phasor measurement units DISTRIBUTION SYSTEM STATE ESTIMATION	d assumptions - W formulation of W Measurement redu ection, identification External system S. N	reighted LS state undancy on and su equivale	<pre>state in the second secon</pre>	Line squa natio 0 ccura ssion g- N 0	re s n- cy of etv	rrer stat Fas 9 and bad vor					
Static state estimation algo decoupled state UNIT III Tracking state variance of me measurements observability - UNIT IV Distribution sy	mation: Active and reactive power bus measurements – Bus voltage measurements - Measurement model an prithm- Maximum likelihood estimation - Decoupled estimation. NETWORK OBSERVABILITY ANALYSIS estimation: Algorithm - Computational aspects – I asurements - Variance of measurement residuals- Detec - Pseudo measurements- Virtual measurements- Observability analysis using phasor measurement units DISTRIBUTION SYSTEM STATE ESTIMATION stem state estimation- State of the art methods – C	d assumptions - W formulation of W Measurement redu ection, identificatio External system a. N Comparison of dif	reighted LS state undancy on and su equivale	 star star estin estin - According ppression ncing SSE 	Line squa natio 0 ccura ssion g- N 0 algo	re s n- cy of etv	rrer stat Fas 9 an ba vor 9					
Static state esti- measurements estimation algo decoupled state UNIT III Tracking state variance of me measurements observability - UNIT IV Distribution sy	mation: Active and reactive power bus measurements – Bus voltage measurements - Measurement model an prithm- Maximum likelihood estimation - Decoupled estimation. NETWORK OBSERVABILITY ANALYSIS estimation: Algorithm - Computational aspects – I asurements - Variance of measurement residuals- Dete - Pseudo measurements- Virtual measurements- Observability analysis using phasor measurement units DISTRIBUTION SYSTEM STATE ESTIMATION	d assumptions - W formulation of W Measurement redu ection, identificatio External system a. N Comparison of dif	reighted LS state undancy on and su equivale	 star star estin estin - According ppression ncing SSE 	Line squa natio 0 ccura ssion g- N 0 algo	re s n- cy of etv	rer stat Fas 9 an ba vor 9					
Static state estimation algo estimation algo decoupled state UNIT III Tracking state variance of me measurements observability - UNIT IV Distribution sy Developments UNIT V	mation: Active and reactive power bus measurements – Bus voltage measurements - Measurement model an orithm- Maximum likelihood estimation - Decoupled estimation. NETWORK OBSERVABILITY ANALYSIS estimation: Algorithm - Computational aspects – I asurements - Variance of measurement residuals- Dete - Pseudo measurements- Virtual measurements- Observability analysis using phasor measurement units DISTRIBUTION SYSTEM STATE ESTIMATION stem state estimation- State of the art methods – C in measurement system and DSSE design- Pseudo mea SECURITY ASSESSMENT AND ENHANCEME	d assumptions - W formulation of W Measurement reduction, identification External system S. N Comparison of dif surements- System NT	reighted LS state undancy on and su equivale ferent D n archited	<pre>state in the second secon</pre>	Line squa natio 0 ccura ssion g- N 0 algo 0	re s n- 0 cy of fetv 0 rith	rrer stat Fas 9 an ba vor 9 ums 9					
Static state estimation algo estimation algo decoupled state UNIT III Tracking state variance of me measurements observability - UNIT IV Distribution sy Developments UNIT V Contingency and	mation: Active and reactive power bus measurements – Bus voltage measurements - Measurement model an prithm- Maximum likelihood estimation - Decoupled estimation. NETWORK OBSERVABILITY ANALYSIS estimation: Algorithm - Computational aspects – I asurements - Variance of measurement residuals- Dete - Pseudo measurements- Virtual measurements- Observability analysis using phasor measurement units DISTRIBUTION SYSTEM STATE ESTIMATION (stem state estimation- State of the art methods – C in measurement system and DSSE design- Pseudo mea SECURITY ASSESSMENT AND ENHANCEME halysis: Linearized AC and DC models of power system	d assumptions - W formulation of W Measurement reduction, identification External system S. N Comparison of diffusurements- System NT tems for security a	reighted LS state undancy on and su equivale ferent D n archited assessme	 ts - I least estin 9 - Ac ppression ppression sSE sture. 9 ent - 2 	Line squa natio 0 ccura ssion g- N 0 algo 0 Line	re s n- o cy of fetv 0 rith 0 ou	rren stat Fas 9 and bad vor 9 ums 9 tag					
Static state estimation algo decoupled state UNIT III Tracking state variance of me measurements observability - UNIT IV Distribution sy Developments UNIT V Contingency and distribution fac	mation: Active and reactive power bus measurements – Bus voltage measurements - Measurement model an prithm- Maximum likelihood estimation - Decoupled estimation. NETWORK OBSERVABILITY ANALYSIS estimation: Algorithm - Computational aspects – I asurements - Variance of measurement residuals- Dete - Pseudo measurements- Virtual measurements- Observability analysis using phasor measurement units DISTRIBUTION SYSTEM STATE ESTIMATION stem state estimation- State of the art methods – C in measurement system and DSSE design- Pseudo measurement SECURITY ASSESSMENT AND ENHANCEMEN halysis: Linearized AC and DC models of power systems tors and generation shift factors for DC and linearized	d assumptions - W formulation of W Measurement redu ection, identification External system 5. N Comparison of diff surements- System NT tems for security a d AC models - Sir	reighted LS state undancy on and su equivale ferent D architec assessme ngle cont	<pre>sts - I least estim 9 - Ac ppres ncing 9 SSE sture. 9 mt - T inger</pre>	Line squa natio 0 cccura sssion g- N 0 algo 0 Line ncy a	ress n- o cy of fetv 0 rith 0 ou	rrer stat Fas 9 and bad vor 9 ums 9 tag					
Static state estimation algo estimation algo decoupled state UNIT III Tracking state variance of me measurements observability - UNIT IV Distribution sy Developments UNIT V Contingency and distribution fac using these fac	mation: Active and reactive power bus measurements – Bus voltage measurements - Measurement model an prithm- Maximum likelihood estimation - Decoupled estimation. NETWORK OBSERVABILITY ANALYSIS estimation: Algorithm - Computational aspects – I asurements - Variance of measurement residuals- Dete - Pseudo measurements- Virtual measurements- Observability analysis using phasor measurement units DISTRIBUTION SYSTEM STATE ESTIMATION stem state estimation- State of the art methods – C in measurement system and DSSE design- Pseudo mea SECURITY ASSESSMENT AND ENHANCEME halysis: Linearized AC and DC models of power systems tors and generation shift factors for DC and linearized ctors. Contingency ranking and security indices-Corr	d assumptions - W formulation of W Measurement redu ection, identificatio External system a. N Comparison of dif surements- System NT tems for security a d AC models - Sir recting the genera	reighted LS state undancy on and su equivale ferent D architec assessme ngle cont	<pre>sts - I least estim 9 - Ac ppres ncing 9 SSE sture. 9 mt - T inger</pre>	Line squa natio 0 cccura sssion g- N 0 algo 0 Line ncy a	ress n- o cy of fetv 0 rith 0 ou	rrer stat Fas 9 and bad vor 9 ums 9 tag					
Static state estimation algo estimation algo decoupled state UNIT III Tracking state variance of me measurements observability - UNIT IV Distribution sy Developments UNIT V Contingency and distribution fac using these fac enhancement u	mation: Active and reactive power bus measurements - Bus voltage measurements - Measurement model an orithm- Maximum likelihood estimation - Decoupled estimation. NETWORK OBSERVABILITY ANALYSIS estimation: Algorithm - Computational aspects - I asurements - Variance of measurement residuals- Dete - Pseudo measurements- Virtual measurements- Observability analysis using phasor measurement units DISTRIBUTION SYSTEM STATE ESTIMATION stem state estimation- State of the art methods - C in measurement system and DSSE design- Pseudo measurement SECURITY ASSESSMENT AND ENHANCEMEN halysis: Linearized AC and DC models of power systems tors and generation shift factors for DC and linearized ctors. Contingency ranking and security indices-Corn sing linearized DC models - Methods using sensitivity	d assumptions - W formulation of W Measurement redu ection, identificatio External system a. N Comparison of diff surements- System NT tems for security a d AC models - Sir recting the general	reighted LS state undancy on and su equivale ferent D architec assessme ngle cont	<pre>sts - I least estim 9 - Ac ppres ncing 9 SSE sture. 9 mt - T inger</pre>	Line squa natio 0 cccura sssion g- N 0 algo 0 Line ncy a	ress n- o cy of fetv 0 rith 0 ou	rrer stat Fas 9 an ba vor 9 ums 9 tag					
Static state estimation algo estimation algo decoupled state UNIT III Tracking state variance of me measurements observability - UNIT IV Distribution sy Developments UNIT V Contingency and distribution fac using these fac enhancement u	mation: Active and reactive power bus measurements – Bus voltage measurements - Measurement model an prithm- Maximum likelihood estimation - Decoupled estimation. NETWORK OBSERVABILITY ANALYSIS estimation: Algorithm - Computational aspects – I asurements - Variance of measurement residuals- Dete - Pseudo measurements- Virtual measurements- Observability analysis using phasor measurement units DISTRIBUTION SYSTEM STATE ESTIMATION stem state estimation- State of the art methods – C in measurement system and DSSE design- Pseudo mea SECURITY ASSESSMENT AND ENHANCEME halysis: Linearized AC and DC models of power systems tors and generation shift factors for DC and linearized ctors. Contingency ranking and security indices-Corr	d assumptions - W formulation of W Measurement redu ection, identificatio External system a. N Comparison of diff surements- System NT tems for security a d AC models - Sir recting the general	reighted LS state undancy on and su equivale ferent D architec assessme ngle cont	<pre>sts - I least estim 9 - Ac ppres ncing 9 SSE sture. 9 mt - T inger</pre>	Line squa natio 0 cccura sssion g- N 0 algo 0 Line ncy a	ress n- o cy of fetv 0 rith 0 ou	rren stat Fas 9 and bad vorl 9 ums 9 tag					

Text Books:								
1.	Ali Abur, "Power System State Estimation Theory and Implementation", Marcel Dekker, 2004.							
2.	Wood, A.J., Wollenberg, B.F., and Sheble, G.B., "Power Generation, Operation and Control", John Wiley							
	and Sons, 3rd Edition, 2013.							
3.	Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw							
	Hill Publishers, 1991.							
Reference Books:								
1.	Abhijit Chakrabarti and Sunita Halder, "Power System Analysis Operation and Control", PHI Learning,							
	2010.							
2.	G.L. Kusic, "Computer Aided Power System Analysis", Prentice Hall of India, 1989.							

2. G.L. Kusic, "Computer Aided Power System Analysis", Prentice Hall of India, 1989.

Course Outcomes: Bloom's Taxono						
Upon cor	nple	Mapped				
CO1	:	Understand the conceptual aspects in power system state estimation.	L2: Understanding			
CO2	:	Demonstrate various state estimation methods.	L3: Applying			
CO3	:	Acquire proficiency to perform observability analysis.	L4: Analysing			
CO4	:	Demonstrate the distribution state estimation.	L3: Applying			
CO5	:	Realize the security assessment and enhancement strategies.	L3: Applying			

COURSE ARTICULATION MATRIX															
COs\ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO 1	1	3	3	1	1		1				1	2	1	3	1
CO 2	1	2	3	2	2		2				1	2	1	3	1
CO 3	1	2	3	2	2		2				1	2	1	2	1
CO 4	1	2	2	1	1		1				1	2	1	2	1
CO 5	1	2	3	2	2		2				1	2	1	1	1
Avg	1	2.2	2.8	1.6	1.6	0	1.6	0	0	0	1	2	1	2.2	1
3/2/1 – indicates strength of correlation (3- High, 2-Medium, 1-Low)															