OPEN ELECTIVE COURSES

22EEOE01	22EEOE01 RENEWABLE ENERGY SOURCES											
PREREQUIS	OE	Credit		3								
Basic Electrica	L	Т	Р	T H								
	3	0	0	3								
Course Objectives:												
1. To impart knowledge on the different renewable energy sources and technologies.												
UNIT I Warld Engra	UNIT I INTRODUCTION											
world Energy	Use – Reserves of Energy Resources – Environme	mai Aspects of	Energy		nzatio	m –						
Renewable Energy Scenario in Tamil Nadu, India and around the World – Potentials – Achievements /												
Applications – Economics of Renewable Energy Systems.												
UNIT II	SOLAR ENERGY		9	0	0	9						
Solar Radiation – Measurements of Solar Radiation – Flat Plate and Concentrating Collectors – Solar Direct												
Thermal Applications – Solar Thermal Power Generation – Fundamentals of Solar Photo Voltaic Conversion –												
Solar Cells – S	olar PV Power Generation – Solar PV Applications.											
UNIT III	IT III WIND ENERGY											
Wind Data and	Energy Estimation – Types of Wind Energy Systems –	Performance - S	ite Sele	ection	n – De	tails						
of Wind Turbin	ne Generator – Safety and Environmental Aspects.											
UNIT IV	BIO – ENERGY	9	0	0	9							
Biomass Direct Combustion – Biomass Gasifiers – Biogas Plants – Digesters – Ethanol Production – Bio												
Diesel – Cogeneration – Biomass Applications.												
UNIT V		9	0	0	9							
Tidal Energy – Wave Energy – Open and Closed Ocean Thermal Energy Conversion(OTEC) Cycles – Small												
Hydro-Geothermal Energy – Hydrogen and Storage – Fuel Cell Systems – Hybrid Systems.												
		 Total (4	45L+07	() = 4	5 Per	iods						

Text Books:									
1.	Rai. G.D., "Non-Conventional Energy Sources", Khanna Publishers, New Delhi, 2011.								
2.	Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK, 2006.								
3.	Godfrey Boyle, "Renewable Energy, Power for A Sustainable Future", Oxford University								
Reference Boo	Reference Books:								
1.	Chetan Singh Solanki, Solar Photovoltaics, "Fundamentals, Technologies and Applications", PHI Learning Private Limited, New Delhi, 2009.								
2.	Tiwari. G.N., Solar Energy – "Fundamentals Design, Modelling & Applications", Narosa Publishing House, New Delhi, 2002.								
3.	Freris. L.L., "Wind Energy Conversion Systems", Prentice Hall, UK, 1990.								
4.	Johnson Gary, L. "Wind Energy Systems", Prentice Hall, New York, 1985								
5.	David M. Mousdale – "Introduction to Biofuels", CRC Press, Taylor & Francis Group, USA 2010								

_

Course Oute	Bloom's Taxonomy Mapped		
CO1	:	Recall the available renewable Energy Sources	L1: Remembering
CO2	:	Illustrate the types of generators.	L4: Analysing
CO3	:	Apply different types of mechanism for energy conversion.	L3: Applying
CO4	:	Analyze the benefits and challenges in harnessing renewable Energy.	L4: Analysing
CO5	:	Recognize and apply appropriate renewable energy sources.	L2: Understanding

COURSE ARTICULATION MATRIX															
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	РО 11	PO 12	PS O1	PS O2	PS O3
CO1	2	1	1	1	2	1	1	1	1	1	1	1	1	1	1
CO2	3	1	1	3	1	1	1	1	1	1	1	1	2	1	1
CO3	1	2	2	1	1	1	1	1	1	1	1	1	2	1	1
CO4	3	1	1	3	2	1	1	1	1	1	1	1	2	1	1
CO5	2	1	1	2	1	1	2	1	1	1	1	1	2	1	1
Avg	2.2	1.2	1.2	2	1.4	1	1.2	1	1	1	1	1	1.7	1.2	1
3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)															

##