22EEPE33 ARTIFICIAL INTELLIGENCE AND COMPUTER VISION						SEMESTER VIII					
PREREQUISITES CATEGORY						Credit					
Soft computing Hours/Week						P	T				
			Hours, week	3	0	0	3				
Cour	se Objec	tives:									
1	To und	erstand the various characteristics of Intelligent agent	ts								
2	To lear										
3		n to represent knowledge in solving AI problems									
4	To understand the different ways of designing software agents										
5		w about the various applications of AI									
6		vide introduction to computer vision		-	-	-	_				
<u>Unit</u>		TRODUCTION		9	0		. 9				
		efinition – Future of Artificial Intelligence – Chara		igent A	Agents	– Ty	pic				
		nts – Problem Solving Approach to Typical AI problem ROBLEM SOLVING METHODS	ems.	9	0	Δ	9				
Unit		ng Methods – Search Strategies – Uninformed –		-	0	0					
•	1	Pruning – Stochastic Games		0	0	0	(
Unit		NOWLEDGE REPRESENTATION	B 1 61 1 1	9	0		. 9				
		dicate Logic – Prolog Programming – Unification –									
		Knowledge Representation – Ontological Engineeri									
		and Mental Objects – Reasoning Systems for Catego	ries – Reasoning wi								
		DEFEWARE AGENTS AND AI APPLICATIONS or Intelligent Agents – Agent communication – Neg		9	0	0	9				
		- Trust and Reputation in Multi-agent systems.	gottation and Daiga	unnig -	- Alg	umen	lain				
A.T		a Language Madela Information Detrioyal In	formation Extraction	N	[1	Tam					
		s: Language Models – Information Retrieval – In: Machine Translation – Speech Recognition – Robe									
Movi	•	Viacinite Translation – Speech Recognition – Roo	ot – Haluwale – I	reepin	JII – 1	l Iaiiii	mg				
Unit		OMPUTER VISION		9	0	0	9				
		Processing: Image formation –image filtering- Edg	e detection- princir		Ŷ	Ŷ	-				
		n - SIFT - Large scale image search application	se detection princip		iponei	it unu	1951				
Geon	netric tec	hniques in computer vision: Image transformations	s – Camera projecti	ons- ca	amera	calib	ratio				
		stereo – two view structure from motion- object tracki		0110 00	u	Jun0.					
Mack	nine leor	ning for computer vision: introduction to machine	e learning-Image o	lassific	eation	_ ob	iect				
		nantic segmentation	i iomining innuge o			50	,				
	201	<i>0</i>	Tota	I (45L+	+0T)=	45 Pe	rio				
				·	,	-					
Text	Books:										
1	S. Russel	and P. Norvig, "Artificial Intelligence: A Modern A	pproach", Prentice	Hall, T	Third H	Editio	n,				
1.	S. Russel 2009.						-				
1.	S. Russel 2009. I. Bratko,	and P. Norvig, "Artificial Intelligence: A Modern Ag "Prolog: Programming for Artificial Intelligence", I s Inc., 2011.									

3 David A. Forsyth and Jean Ponce, "Computer Vision: A Modern Approach", Pearson Publications, Second Edition, 2012.

4 Richard Hartley and Andrew Zisserman, "Multiple View Geometry in Computer Vision", Cambridge University Press, Second Vision, 2004.

Reference Books:

1	M. Tim Jones," Artificial Intelligence: A systems Approach (Computer science)", Jones and Bartlett									
	Publishers Inc., First Edition, 2008.									
2	Nils J.Nilsson," The Quest for Artificial Intelligence", Cambridge University Press, 2009.									
3	William F. Clocksin and Christopher S. Mellish, "Programming in Prolog: Using ISO standard", Fifth									
	Edition, Springer, 2003.									
4	Gerhard Weiss, "Multi Agent systems", Second Edition, MIT Press, 2013.									
5	David L. Poole and Alan K.Mackworth, "Artificial Intelligence: Foundations of Computational Agents",									
	Cambridge University Press 2010.									

Course	e Oi	itcomes:	Bloom's Taxonomy			
Upon c	com	pletion of this course, the students will be able to:	Mapped			
CO1	:	Choose appropriate search algorithms for any AI problem	L5: Evaluating			
CO2	:	Represent a problem using first order and predicate logic	L2: Understanding			
CO3	:	Provide the apt agent strategy to solve a given problem	L4: Analyzing			
CO4	:	Design software agents to solve a problem and applications for NLP that use Artificial Intelligence.	L6: Creating			
CO5	:	Use AI techniques in computer vision	L3: Applying			

COURSE ARTICULATION MATRIX															
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3				3						1		1		1
CO2	2	3	1	2	3								3	2	
CO3	2		1	2	3								2	3	
CO4	2		3	2	3						1		2	3	1
CO5	2		3	2	3						1		2	3	1
Avg	2.2	3	2	1.6	3	0	0	0	0	0	1	0	2	2.7 5	1
3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)															