22EE509	CONTROL AND INSTRUMENTATION LAB	SEMESTER			V						
PREREQ	UISTIES	CATEGORY	PC	Credit		1.5					
				T	P	TH					
Control systems		Hours/Week	0	0	3	3					
Course Ol	ojectives:					1					
1. To	study the use of Transducer.										
2. To	To measure the resistance, capacitance and inductance using bridges.										
	calibrate voltage and current using measuring equipment	•									
	EXPERIMENTS										
1. M	easurement of displacement using transducers.										
2. M	Measurement of inductance by Maxwell's bridge.										
3. M	Measurement of resistance by Wheatstone bridge.										
4. M	Measurement of capacitance by Schering bridge.										
5. M	Measurement of three phase power and power factor.										
6. Ins	Instrumentation amplifiers.										
7. A	A/D converters and D/A converters.										
8. De	Design of Lag, Lead and Lag-Lead Compensators										
	Design of P, PI and PID controllers										
	Position Control Systems										
	Simulation of Control Systems by Mathematical development tools.										
	ansfer function of AC servo-motor.										
	ansfer function of separately excited DC motor.										
		Tota	1 (0 +	45)=	45 P	eriod					

Reference Books:									
1	A. Anand Kumar, "Control Systems", PHI Learning Pvt. Ltd., New Delhi, 2 nd Edition, 2015.								
2	I.J. Nagrath& M. Gopal, "Control Systems Engineering", New Age International Publishers, Delhi,								
	5 th Edition, 2015.								
3	K. Ogata, "Modern Control Engineering", Pearson Education, New Delhi, 2010.								
E -References									
1	https://nptel.ac.in/courses/108105064/								
2	https://nptel.ac.in/courses/108106074/								

Cours	e O	Bloom's	
Upon o	com	apletion of this course, the students will be able to:	TaxonomyMapped
CO1	:	Measure power in AC circuits	L2:Understanding
CO2	:	Calculate R,L,C using various bridges.	L5:Evaluating
CO3		Design of controllers and compensators	L3:Applying
CO4	:	Study the position control system	L2:Understanding
CO5	:	Determine the transfer function of AC and DC motors.	L5:Evaluating

COURSE ARTICULATION MATRIX															
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	3	3	3	2	1	3	1	2		1		2	2	1
CO2	3	3	3	2	2	1	1	2	1		1		2	2	1
CO3	3	3	3	1	1	1	2	2	1		1		2	2	1
CO4	2	3	2	3	1	1	1	3	1		1		2	2	1
CO5	3	2	3	3	3	1	1	1	1		1		2	2	1
Avg	3	2.8	2.8	2.4	1.8	1	1.6	1.8	1.2	0	1	0	2	2	1
3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)															