22MEHO310 SMART MOBILITY AND INTELLIGENT VE	HICLES				
PREREQUISITES	CATEGORY	L	T	Р	С
	PE	3	0	0	3
	· · · · · · · · · · · · · · · · · · ·				
COURSE OBJECTIVES:					
1. To introduce students to the various technologies and systems used to imple vehicles	ement smart mobility	and 1	ntelli	gent	
 To learn Basics of Radar Technology and Systems, Ultrasonic Sonar System Systems and other sensors for automobile vision system 	ns, LIDAR Sensor Te	echnol	logy a	ınd	
3. To learn Basic Control System Theory applied to Autonomous Automobiles	3				
4. To produce overall impact of automating like various driving functions, con information that assist with a task		ile to s	sourc	es of	
 5. To allow the automobile to make autonomous intelligent decisions concerni potentially impact the safety of the occupants through connected car & autom 				that	
potentiarly impact the safety of the occupants unough connected car & auto	nomous veniere teen	norog.	y		
UNIT I INTRODUCTION TO AUTOMATED, CONNECTED INTELLIGENT VEHICLES	AND	9	0	0	9
Concept of Automotive Electronics, Electronics Overview, History & Evolution, Ir	nfotainment, Body, C	hassis	s, and	Powe	ertrain
Electronics, Introduction to Automated, Connected, and Intelligent Vehicles. (Intelligent Vehicles	Case studies: Autom	nated,	Con	nected	d, and
UNIT II SENSOR TECHNOLOGY FOR SMART MOBILITY		9	0	0	9
Basics of Radar Technology and Systems, Ultrasonic Sonar Systems, Lidar S					
Technology, Night Vision Technology, Other Sensors, Use of Sensor Data Fusio	n, Integration of Ser	nsor D	ata to) On-	Board
Control Systems					
UNIT III CONNECTED AUTONOMOUS VEHICLE		9	0	0	9
Basic Control System Theory applied to Automobiles, Overview of the Operation					
Theory and Autonomous Vehicles, Role of Surroundings Sensing Systems and A	utonomy, Role of W	vireles	s Dat	a Net	works
and Autonomy.					
UNIT IV VEHICLE WIRELESS TECHNOLOGY AND NETWO	ORKING	9	0	0	9
Wireless System Block Diagram and Overview of Components, Transmission S		-	-		-
System Concepts- Demodulation/Decoding, Wireless Networking and Applications	s to Vehicle Autonon	ny, Ba	sics o	of Con	nputer
Networking - the Internet of Things, Wireless Networking Fundamentals, Integrat	ion of Wireless Netw	workir	ng ano	d On-	Board
Vehicle Networks					
UNIT V CONNECTED CAR AND AUTONOMOUS VEHICLE	2				
UNIT V TECHNOLOGY		9	0	0	9
Connectivity Fundamentals, Navigation and Other Applications, Vehicle-to-Vehicle					
Roadside and Vehicle-to-Infrastructure Applications, Autonomous Vehicles - I Roadblock Issues, Technical Issues, Security Issues	Driverless Car Tech	nolog	y, Mo	oral,	Legal,
	TOTAL (45	T). 4	<u>5 DF</u>		DC
	TOTAL (45	L): 4	JFE	KIU	<u>DS</u>
TEXT BOOKS:					
1. "Intelligent Transportation Systems and Connected and Automated Veh Board	icles", 2016, Transp	ortatic	on Res	search	n
2. Radovan Miucic, "Connected Vehicles: Intelligent Transportation System	ms", 2019, Springer				
REFERENCES:	" Tasilan & English	Carat	541	F 4141	

1. Tom Denton, "Automobile Electrical and Electronic systems, Roultedge", Taylor & Francis Group, 5th Edition, 2018.

COUR Upon c	Bloom Taxonomy Mapped	
	Recognize the concept of cyber-physical control systems and their application to collision avoidance and autonomous vehicles	
<i>CO2</i>	Select the concept of remote sensing and the types of sensor technology needed to implement remote sensing	
<i>CO3</i>	Familiar with the concept of fully autonomous vehicles	
<i>CO4</i>	Apply the basic concepts of wireless communications and wireless data networks	
<i>CO5</i>	Analyze the concept of the connected vehicle and its role in automated vehicles	

COURSE ARTICULATION MATRIX

												-			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	0	2	1	0	0	0	0	1	2	2	2	0
CO2	2	2	2	0	2	1	0	0	0	0	1	2	2	2	0
CO3	2	2	2	0	2	1	0	0	0	0	1	2	2	2	0
CO4	2	2	2	0	2	1	0	0	0	0	1	2	2	2	0
CO5	2	2	2	0	2	1	0	0	0	0	1	2	2	2	0
Avg	2	2	2	0	2	1	0	0	0	0	1	2	2	2	0
3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)															