22M	EHO309	DIGITAL MANUFACTURING AND IC	Т					
PRE	L	T	' I		С			
				3	0	()	3
COU		HOTH/FO.						
	To study	the various aspects of digital manufacturing						-
1.	To incula	the various aspects of digital manufacturing.	upply aboin Manag	mont				
2.		ate the importance of DM in Product Energy is handgement and S		ement				
3.	To formu	late of smart manufacturing systems in the digital work environme	nt					
4.	To interp	ret IoT to support the digital manufacturing						
5.	To elabor	ate the significance of digital twin						
U	INIT I	INTRODUCTION		9	0	0		9
Introd	uction – N	eed - Overview of Digital Manufacturing and the Past - Aspects o	f Digital Manufactu	ring: I	Produ	ict lif	è c	ycle
Smart	factory,	and value chain management – Practical Benefits of Digital	Manufacturing –	The H	uture	e of	Dı	gita
Ivianu	lactul ling.							
U	NIT II	DIGITAL LIFE CYCLE & SUPPLY CHAIN MANAG	EMENT	9	0	0		9
Collal	porative Pr	oduct Development, Mapping Requirements to specifications – P	art Numbering, Eng	gineeri	ing V	/aulti	ng,	and
Produ	ct reuse –	Engineering Change Management, Bill of Material and Process Co	nsistency – Digital	Mock	up ai	nd Pı	oto	typ
develo	opment – V	virtual testing and collateral. Overview of Digital Supply Chain - S	cope& Challenges in	n Digi	tal S	C - E	ffe	ctiv
Digita	l Iransfor	mation - Future Practices in SCM						
III	NIT III	SMART FACTORY		9	0	0		9
Smart	Factory -	Levels of Smart Factories – Benefits – Technologies used in St	nart Factory – Sma	rt Fac	torv	in Ic	T-	Ke
Princi	ples of a S	mart Factory – Creating a Smart Factory – Smart Factories and Cy	bersecurity					
U	NIT IV	INDUSTRY 4.0		9	0	0		9
Introd	uction – Ir	dustry 4.0 –Internet of Things – Industrial Internet of Things – Fra	mework: Connectiv	ity dev	vices	and	serv	vice
– Inte	Iligent net	Works of manufacturing – Cloud computing – Data analytics –Cyt	per physical systems	s –Ma	chine	to N	Лас	hın
comm	lumeation	- Case Studies.						
U	NIT V	STUDY OF DIGITAL TWIN		9	0	0		9
Basic	Concepts	– Features and Implementation – Digital Twin: Digital Thread and	Digital Shadow- B	uildin	g Blo	ocks ·	– T	ype
– Cha	racteristics	of a Good Digital Twin Platform - Benefits, Impact & Challenges	s – Future of Digital	Twin	s			51
			TOTAL (45	5L): 4	15 PI	ERI	OD	S
		~						
TEX	T BOOK	8: Zhao Shara (Sharaanan) Via and Daine Char, Eurodamantala af I	Naital Manufasturin	- Cair		C		
1.	Zude Verla	z London Limited 2012	ngital Manufacturin	ig Scie	ence,	Spri	nge	r-
2	Alasd	air Gilchrist, "Industry 4.0: The Industrial Internet of Things". A p	ress, 2016.					
			,					
REF	ERENCE	S:						
1	Lihui	Wang and Andrew YehChing Nee, Collaborative Design and Pla	nning for Digital M	anufa	cturin	ıg, Sj	prir	iger
1.	Verla	g London Limited, 2009.						
2.	Andre	w Yeh Chris Nee, Fei Tao, and Meng Zhang, "Digital Twin Driver	n Smart Manufacturi	ng", 1	Elsev	vier S	cie	nce.
	U	Inited States, 2019.	cital Transformentia					
3.		dvanced Manufacturing Switzerland, 2017	gnai mansiormatic	м, э	pring	,er S	0116	ν 5 11
	Ronal	d R. Yager and Jordan Pascual Espada, "New Advances in the I	nternet of Things".	Spring	ger.,	Swit	zer	land
4.	2018.				- /			
5.	Ronal 2018	d R. Yager and Jordan Pascual Espada, "New Advances in the Inte	rnet of Things", Spi	ringer.	., Swi	itzerl	anc	I,

COUF Upon o	Bloom Taxonomy Mapped	
C01	Impart knowledge to use various elements in the digital manufacturing.	
<i>CO2</i>	Differentiate the concepts involved in digital product development life cycle process and supply chain management in digital environment.	
<i>CO3</i>	Select the proper procedure of validating practical work through digital validation in Factories.	
<i>CO4</i>	Implementation the concepts of iot and its role in digital manufacturing.	
<i>C05</i>	Analyse and optimize various practical manufacturing process through digital twin.	

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	0	0	0	0	2	0	0	0	2	2	2	2	2
CO2	1	1	0	0	0	0	2	0	0	0	2	2	2	2	2
CO3	1	1	0	0	0	0	2	0	0	0	2	2	2	2	2
CO4	1	1	0	0	0	0	2	0	0	0	2	2	2	2	2
CO5	1	1	0	0	0	0	2	0	0	0	2	2	2	2	2
Avg	1	1	0	0	0	0	2	0	0	0	2	2	2	2	2
3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)															