22M														
PRE	L	Τ	Р	C										
			PE	3	0	0	3							
COU	DSE OBI	FCTIVES												
1	Explain th	e need and progress of precision engineering												
2	To know a	The know about the principle and working of different methods of presidion machining												
2.	To understand about micromachining													
3.	1 o understand about micromachining.													
4.	To know about Laser devices and machine vision.													
5.	10 underst	and about SEM and 3D surface topography.												
	NIT I	INTRODUCTION		0	Δ	0	0							
U	INII I	INTRODUCTION	access of Ashievahla	y Maahi	U nima		9							
Norma	al, Precision	n, High-precision, Ultra precision Processes and Nanotechnology	asses of Acmevable	Machi	ning	Accu	racy –							
U	NIT II	PRECISION MACHINING		9	0	0	9							
Overv grindi	iew of Mic ng, Ultra-pr	ro- and Nano- machining, Conventional micro machining technic ecision diamond turning, SPDT Single point diamond turning.	ques - micro turning	, micro	o-mil	ling, 1	nicro-							
UN		MICRO MACHINING		9	0	0	9							
Micro	electrical	discharge machining, Photochemical machining, Electro	chemical microma	chinin	g, I	Laser	beam							
microi	machining,	Electron beam micromachining, Focused Ion Beam micromachin	ing, etc											
		A CER AND ODDUCC			0									
		LASER AND OPTICS	9	0	0	9								
micro	nachining,	Electron beam micromachining, Focused Ion Beam micromachin	ing.	chinin	g, 1	Laser	beam							
U	NIT V	MEASUREMENT AND CHARACTERISATION	9	0	0	9								
Measu	rement of 7	nt of Typical Nanofeatures, Surface metrology - 3D surface topography - Need, Measurement – Chromatic confocal												
Micro	scopy, Inter	ferometry, Non-optical Scanning Microscopy – Scanning electron	Microscopes, Scann	ing pr	obe n	nicros	copes,							
			TOTAL (45	5L): 4	5 PF	CRIO	DS							
TEX	F BOOKS	:												
1.	Jain, V	.K., Introduction to micromachining, Narosa publishers, 2018												
2.	Venktesh V.C., Sudin Izman, Precision Engineering, Tata Mc.Graw Hill Publishing Company, New Delhi 2007.													
DEEI	DENCE	N												
<u>refi</u>	David Dornfeld, Dae-Eun Lee, Precision Manufacturing, Springer, 2008													
2.	Kevin Harding, "Handbook of Optical Dimensional Metrology, Series: Series in Optics and optoelectronics", Taylor													
3.	Murty,	R.L., Precision Engineering in Manufacturing, New Age publish	ers, 2005.											
		· · · · · · · · ·												

COUF Upon o	Bloom Taxonomy Mapped	
C01	Impart knowledge progress of precision engineering	Understand
<i>CO2</i>	Identify principle and working of different methods of precision machining	Understand
<i>CO3</i>	Apply knowledge on micromachining	Apply
<i>CO4</i>	Define the uses of Laser devices and machine visi	Remember
<i>CO5</i>	To handle SEM .	Apply

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	0	1	0	0	1	0	0	0	0	2	1	2	2
CO2	1	3	1	1	0	0	1	0	0	0	0	2	0	1	1
CO3	3	3	1	1	2	0	1	0	0	0	0	3	0	1	3
CO4	3	2	1	2	2	0	1	0	0	0	0	3	2	1	3
CO5	2	3	0	3	1	0	1	0	0	0	0	3	0	1	2
Avg	2.2	2.6	0.6	1.6	1.0	0.0	1.0	0.0	0.0	0.0	0.0	2.6	0.6	1.2	2.2
3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)															