22MEHO210		MECHANICAL VIBRATIONS				
PREREQ	UISIT	'ES CATEGORY	L	Т	P	C
		PE	3	0	0	3
COURSE	ORIE	CCTIVES:				
		rstand the Fundamentals of Vibration and its practical applications.				
		stand the characteristics of free and forced vibration.				
		rstand the Single and Multi DOF of vibration system.				
		rstand the working principle and operations of various vibration measuring instruments				
		rstand about the vibration analysis methods.				
	1	FUNDAMENTALS OF VIBRATIONS	-	-		-
UNIT I Basic conc	9	0		9		
-	-	odic, harmonic, non-harmonic. Degree of freedom, static equilibrium position, vibration on analysis.	classi	ficati	on – s	teps
UNIT II	F	TREE VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS	9	0	0	9
		ons by newton, energy, lagrangian and Rayleigh's method. Viscous damped system – up ped – logarithmic decrement – Coulomb's damping; combined viscous and coulomb's d			ed, cr	itical
	ver danij	peu – logariannie deerement – Coulomo's damping, comonicu viscous and coulomo's d	ampi	ng.		
Forced Sin	gle DOF	ORCED VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS F system – Analysis of linear and torsional systems subjected to harmonic force excitation ng elastic damper) – vibration isolation – force transmissibility – motion transmissibil	9 n and	0 harm		
Forced Sin excitation (mounts – R	Fl gle DOF (excludi Rotor dy	ORCED VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS F system – Analysis of linear and torsional systems subjected to harmonic force excitation ing elastic damper) – vibration isolation – force transmissibility – motion transmissibil namics, critical speed of single rotor, undamped and damped.	9 n and ity, ty	0 harm /pical	isola	notic tors
Forced Sin excitation (mounts – R UNIT IV	Fi gle DOF (excludi Rotor dyn	ORCED VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS F system – Analysis of linear and torsional systems subjected to harmonic force excitation ng elastic damper) – vibration isolation – force transmissibility – motion transmissibil namics, critical speed of single rotor, undamped and damped. IBRATION OF MULTI DEGREE OF FREEDOM SYSTEMS	9 n and ity, ty 9	0 harm /pical	onic isola	notic tors
Forced Sin excitation (mounts – R UNIT IV Free undan and Stiffne linear and	F(gle DOF (excludi Rotor dyn V nped Ma ss Matri torsiona	 ORCED VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS F system – Analysis of linear and torsional systems subjected to harmonic force excitation ng elastic damper) – vibration isolation – force transmissibility – motion transmissibil namics, critical speed of single rotor, undamped and damped. IBRATION OF MULTI DEGREE OF FREEDOM SYSTEMS ulti Degree of Freedom vibration system – Influence Coefficients and stiffness coefficients - Eigen values and Eigen vectors for linear system and torsional two degree of freedom al unbalanced system; Two rotors, three rotors and geared system; Dunkerley's and I 	9 n and ity, ty 9 ents- 1 om ; H	0 harm pical 0 Flexit folzer	0 0 0 0 0 0 0 0 0	notic tors 9 Matr nod fe
excitation (mounts – R UNIT IV Free undan and Stiffne	F(gle DOF (excludi Rotor dyn V nped Mu ess Matri torsiona vibrator	 ORCED VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS F system – Analysis of linear and torsional systems subjected to harmonic force excitation ng elastic damper) – vibration isolation – force transmissibility – motion transmissibil namics, critical speed of single rotor, undamped and damped. IBRATION OF MULTI DEGREE OF FREEDOM SYSTEMS ulti Degree of Freedom vibration system – Influence Coefficients and stiffness coefficients - Eigen values and Eigen vectors for linear system and torsional two degree of freedoal unbalanced system; Two rotors, three rotors and geared system; Dunkerley's and I y system. //IBRATION MEASURING INSTRUMENTS AND VIBRATION 	9 n and ity, ty 9 ents- 1 om ; H	0 harm pical 0 Flexit folzer	0 0 0 0 0 0 0 0 0	notic tors d 9 Matr nod fo
Forced Sin, excitation (mounts – R UNIT IV Free undan and Stiffne linear and transverse UNIT V Vibration A Sensors- A	Figle DOF (excludi Rotor dyn V nped Mu ss Matri torsiona vibrator V Analysis Accelero	 ORCED VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS F system – Analysis of linear and torsional systems subjected to harmonic force excitation ng elastic damper) – vibration isolation – force transmissibility – motion transmissibil namics, critical speed of single rotor, undamped and damped. IBRATION OF MULTI DEGREE OF FREEDOM SYSTEMS ulti Degree of Freedom vibration system – Influence Coefficients and stiffness coefficients - Eigen values and Eigen vectors for linear system and torsional two degree of freedoal unbalanced system; Two rotors, three rotors and geared system; Dunkerley's and I y system. 	9 n and ity, ty 9 ents- 1 om ; H Rayle 9 rumer nd El	0 harm vpical 0 Flexil Holzes igh's 0 nts - ectro	onic r isola oility r meth meth 0 Selec dynar	9 Matr nod f nod f 9 tion n nics
Forced Sin, excitation (mounts – R UNIT IV Free undan and Stiffne linear and transverse UNIT V Vibration A Sensors- A	Figle DOF (excludi Rotor dyn V nped Mu ss Matri torsiona vibrator V Analysis Accelero	 ORCED VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS F system – Analysis of linear and torsional systems subjected to harmonic force excitation ng elastic damper) – vibration isolation – force transmissibility – motion transmissibil namics, critical speed of single rotor, undamped and damped. IBRATION OF MULTI DEGREE OF FREEDOM SYSTEMS ulti Degree of Freedom vibration system – Influence Coefficients and stiffness coefficients - Eigen values and Eigen vectors for linear system and torsional two degree of freedoal unbalanced system; Two rotors, three rotors and geared system; Dunkerley's and I y system. //IBRATION MEASURING INSTRUMENTS AND VIBRATION MEASURING INSTRUMENTS AND VIBRATION MEASURING INSTRUMENTS MEASURING INSTRUMENTS AND VIBRATION MEASURING INSTRUMENTS MEASURING INSTRUMENTS MEASURING INSTRUMENTS MEASURING INSTRUMENTS MEASURING INSTRUMENTS MEASURING IN	9 n and ity, ty 9 ents- 1 om ; H Rayle 9 rumer nd El se and	0 harm ypical 0 Flexil Holzes igh's 0 nts - ectro mod	0 0 0 0 0 0 Selec dynar e sha	9 Matrinod f od f 9 tion nics pes.
Forced Sin, excitation (mounts – R UNIT IV Free undan and Stiffne linear and transverse UNIT V Vibration A Sensors- A Frequency	Figle DOF (excludi Rotor dyn wheel Mu ss Matri torsiona vibrator Analysis Accelero Measur	ORCED VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS F system – Analysis of linear and torsional systems subjected to harmonic force excitation ng elastic damper) – vibration isolation – force transmissibility – motion transmissibil namics, critical speed of single rotor, undamped and damped. IBRATION OF MULTI DEGREE OF FREEDOM SYSTEMS ulti Degree of Freedom vibration system – Influence Coefficients and stiffness coefficients ix - Eigen values and Eigen vectors for linear system and torsional two degree of freedor al unbalanced system; Two rotors, three rotors and geared system; Dunkerley's and I y system. //IBRATION MEASURING INSTRUMENTS AND VIBRATION NALYSIS s Overview - Experimental Methods in Vibration AnalysisVibration Measuring Inst ometer MountingsVibration Exciters-Mechanical, Hydraulic, Electromagnetic Ar ing Instruments System Identification from Frequency Response -Testing for resonance TOTAL(4)	9 n and ity, ty 9 ents- 1 om ; H Rayle 9 rumer nd El se and	0 harm ypical 0 Flexil Holzes igh's 0 nts - ectro mod	0 0 0 0 0 0 Selec dynar e sha	9 Matr nod f nod f g tion nics bes.
Forced Sin, excitation (mounts – R UNIT IV Free undan and Stiffne linear and transverse UNIT V Vibration A Sensors- A	Figle DOF gle DOF (excludi Rotor dyn V mped Mu ss Matri torsiona vibrator Vibrator Analysis Accelero Measur	ORCED VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS F system – Analysis of linear and torsional systems subjected to harmonic force excitation ng elastic damper) – vibration isolation – force transmissibility – motion transmissibil namics, critical speed of single rotor, undamped and damped. IBRATION OF MULTI DEGREE OF FREEDOM SYSTEMS ulti Degree of Freedom vibration system – Influence Coefficients and stiffness coefficients ix - Eigen values and Eigen vectors for linear system and torsional two degree of freedor al unbalanced system; Two rotors, three rotors and geared system; Dunkerley's and I y system. //IBRATION MEASURING INSTRUMENTS AND VIBRATION NALYSIS s Overview - Experimental Methods in Vibration AnalysisVibration Measuring Inst ometer MountingsVibration Exciters-Mechanical, Hydraulic, Electromagnetic Ar ing Instruments System Identification from Frequency Response -Testing for resonance TOTAL(4)	9 n and ity, ty 9 ents- 1 om ; H Rayle 9 rumer nd El se and	0 harm ypical 0 Flexil Holzes igh's 0 nts - ectro mod	0 0 0 0 0 0 Selec dynar e sha	9 Matrinod f od f 9 tion nics pes.
Forced Sin excitation (mounts – R UNIT IV Free undan and Stiffne linear and transverse • UNIT V Vibration A Sensors- A Frequency TEXT B(1. 2.	Figle DOF (excludi Rotor dyn vibrator vibrator Analysis Accelero Measur	ORCED VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS F system – Analysis of linear and torsional systems subjected to harmonic force excitation ng elastic damper) – vibration isolation – force transmissibility – motion transmissibil namics, critical speed of single rotor, undamped and damped. IBRATION OF MULTI DEGREE OF FREEDOM SYSTEMS ulti Degree of Freedom vibration system – Influence Coefficients and stiffness coefficie ix - Eigen values and Eigen vectors for linear system and torsional two degree of freedor al unbalanced system; Two rotors, three rotors and geared system; Dunkerley's and I y system. //IBRATION MEASURING INSTRUMENTS AND VIBRATION NALYSIS s Overview - Experimental Methods in Vibration AnalysisVibration Measuring Inst meter MountingsVibration Exciters-Mechanical, Hydraulic, Electromagnetic Ar ing Instruments System Identification from Frequency Response -Testing for resonance //IOTAL(4 nanical Vibration by V.P.Singh resu S. Rao, "Mechanical Vibrations", Pearson Education Incorporated, 2017.	9 n and ity, ty 9 ents- 1 om ; H Rayle 9 rumer nd El se and	0 harm ypical 0 Flexil Holzes igh's 0 nts - ectro mod	0 0 0 0 0 0 Selec dynar e sha	9 Matr nod f nod f g tion nics bes.
Forced Sin, excitation (mounts – R UNIT IV Free undan and Stiffne linear and transverse : UNIT V Vibration A Sensors- A Frequency TEXT B(1. 2.	Figle DOF (excludi Rotor dyn (excludi torsiona vibrator) Analysis Accelero Measur	ORCED VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS ²⁷ system – Analysis of linear and torsional systems subjected to harmonic force excitation ng elastic damper) – vibration isolation – force transmissibility – motion transmissibil namics, critical speed of single rotor, undamped and damped. IBRATION OF MULTI DEGREE OF FREEDOM SYSTEMS ulti Degree of Freedom vibration system – Influence Coefficients and stiffness coefficie ix - Eigen values and Eigen vectors for linear system and torsional two degree of freedo al unbalanced system; Two rotors, three rotors and geared system; Dunkerley's and I y system. /IBRATION MEASURING INSTRUMENTS AND VIBRATION NALYSIS s Overview - Experimental Methods in Vibration AnalysisVibration Measuring Inst meter MountingsVibration Exciters-Mechanical, Hydraulic, Electromagnetic Ar ing Instruments System Identification from Frequency Response -Testing for resonanc TOTAL(4 manical Vibration by V.P.Singh resu S. Rao, "Mechanical Vibrations", Pearson Education Incorporated, 2017.	9 n and ity, ty 9 ents- l om ; H Rayle 9 rumer nd El ee and 45L)	0 harm ypical 0 Flexil Holzes igh's 0 nts - ectro mod	0 0 0 0 0 0 Selec dynar e sha	9 Matrinod f od f 9 tion nics pes.

4.	Julian Happian-Smith – "An Introduction to Modern Vehicle Design", Butterworth-Heinemann, 2001.
5.	William T. Thomson, "Theory of Vibration with Applications", Taylor and Francis, 2003.
6.	Balakumar Balachandran and Edward B. Magrab, "Fundamentals of Vibrations", 1st Editon, Cengage Learning,
	2009
7.	Grover. G.T., "Mechanical Vibrations", Nem Chand and Bros., 2009
8.	NPTEL :: Mechanical Engineering - NOC: Introduction to Mechanical Vibration

	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped		
CO1	Determine stresses in pressure vessels	Evaluate		
<i>CO2</i>	Design pressure vessels using ASME codes	Create		
СОЗ	Design support members of pressure vessels	Create		
<i>CO4</i>	Apply other design considerations for pressure vessels	Apply		
<i>C05</i>	Design of pressurized fluid piping	Create		

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	2	1	0	0	0	0	0	0	0	0	2	2	0
CO2	3	3	2	2	0	0	0	0	0	0	0	0	2	2	0
CO3	3	3	2	2	0	0	0	0	0	0	0	0	2	2	0
CO4	3	3	2	2	0	0	0	0	0	0	0	0	2	2	0
CO5	1	1	2	2	0	0	0	0	0	0	0	0	2	2	0
Avg	2.2	2.4	2	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2	2	0.0
			3	/2/1 -	indic	ates st	rength	of cor	relatio	on (3 – h	igh, 2- 1	nedium,	1- low)	1	