22MEHO	207 ADVANCED COMPUTATIONAL FLUID DYNAM	(CS (CFD)				
PREREO	UISITES	CATEGORY	L	T	P	C
Knowledge	of undergraduate heat transfer and fluid mechanics, basic computational	PE	3	0	0	3
	105					
COURSE	OBJECTIVES:					
The	primary objective of the course is to teach fundamentals of computation	nal method for sol	ving	non-li	inear	partial
1. diffe solvi trans	rential equations (PDE) primarily in complex geometry. The emphasis of ng incompressible and compressible N-S equation in primitive variable formation of N-S equation in curvilinear coordinate system and introduct	the course is to tea s, grid generation ion to turbulence 1	ich Cl in co nodel	FD tec mplez ling.	chniqu x geo	ues for metry,
UNIT I	INTRODUCTION		9	0	0	9
Brief introd example of central diffe	action of boundary layer flow, incompressible and compressible flows, fin parabolic and hyperbolic systems and time discretization technique, ex rence schemes, stability, dissipation and dispersion errors	nite difference and plicit and implicit	l finite meth	e volu 10ds, 1	me m upwii	ethod, nd and
UNIT II	SOLUTION OF SIMULTANEOUS EQUATIONS		9	0	9	
Point iterati CGSTAB ar	ve/block iterative methods, Gauss-Seidel iteration (concept of central of dGMRES (m) matrix solvers, different acceleration techniques.	coefficient and res	sidue,	SOR), CG	S, Bi-
UNIT III	INCOMPRESSIBLE FLOW		9	0	0	9
algorithm fo	r the SMAC method, stability considerations for SMAC method.	boundary condition	ons ic	or unst	eady	nows,
UNIT IV	FDE IN COMPLEX GEOMETRIES		9	0	0	9
Transformat and the accu in transform	ion of governing equation in $\xi \eta$ -plane, transformation of Laplace equation in zero of the solution, basic facts about transformation, grid transformation ed plane, matrices and Jacobians	n, introduction to n on complex geo	geom metri	etrical es. N-	l para S equ	meters ations
UNIT V	COMPRESSIBLE FLOW		9	0	0	9
N-S and ene such as Lax Van Leer's f algorithm in	rgy equations, properties of Euler equation, linearization. Solution of Euler Wendroff, MacCormark, Beam and Warming schemes, Upwind schemes lux splitting, Roe's approximate Riemann solver, TVD schemes. Solution finite volume formulation and transformed coordinate system.	r equation: Explici for Euler equation of N-S equations:	t and t Steg MacC	implic ger an Corma	d Wa ck, Ja	atment rming, meson
		TOTAL(45L)	: 45]	PER	IODS
ТЕХТ ВО	OKS:					
1.00	omputational Fluid Flow and Heat Transfer, Second Edition by K. Mural	idhar, T. Sundara	ajan (Naros	sa), 20	011.
3. 0	Computational Fluid Dynamics by Chung 1. J., Camorldge Oniversity Press, 2	2005.				
4. ľ	Jumerical Computation of Internal and External Flows by Hirch C., Eless	vier 2007.				
REFEREN	NCES:		005			
1. K	. J. Bathe, Finite Element Procedures, Prentice-Hall of India Private Lim	ited, New Delhi, 1	996 Now	Vorl	100	8
∠. J.	C. Sinto and T. J. K. Hugnes, Computational Inelasticity, Springer-Verla	ig ivew I OFK, Inc.	, INCW	1 OFK	, 199	0

2. J. C. Simo and T. J. R. Hughes, Computational Inelasticity, Springer-Verlag New York, Inc., New York, 1998

3.	Cook and Robert Davis etal, "Concepts and Applications of Finite Element Analysis", 4th Edition, John Wiley and Sons, 2001.
4.	Segerlind L.J, "Applied Finite Element Analysis", 2nd Edition, John Wiley, 1984.
5.	O. C. Zienkiewicz and R. L. Taylor, Finite Element Method: Volume 2 Solid Mechanics, Fifth Edition, Butterworth-Heinemann, Oxford,

COUF Upon o	Bloom Taxonomy Mapped		
C01	Understand and be able to numerically solve the incompressible and compressible flows.	Understand	
<i>CO2</i>	Solve computational problems related to iterative methods.	Evaluate	
<i>CO3</i>	Solve the problems related to incompressible fluid flow.	Evaluate	
<i>CO4</i>	Interpret the knowledge, capability of analyzing and solving FDE in complex geometries problem.	Apply	
<i>CO5</i>	Solve the problems related to compressible fluid flow.	Evaluate	

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	1	2	0	0	0	0	0	0	0	2	2	0
CO2	2	2	1	3	2	0	0	0	0	0	0	0	2	2	0
CO3	2	2	1	3	2	0	0	0	0	0	0	0	2	2	0
CO4	2	2	1	1	2	0	0	0	0	0	0	0	2	2	0
CO5	2	2	1	3	2	0	0	0	0	0	0	0	2	2	0
Avg	2	2	1	2.2	2	0	0	0	0	0	0	0	2	2	0
3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)															