22M	EHO206	ADVANCED FINITE ELEMENT METHO										
PRE	CATEGORY	L	T	P	С							
	3	0	0	3								
					•		•					
COU	RSE OBJ	ECTIVES:										
1.	1. To develop a thorough understanding of the advanced finite element analysis techniques.											
2.	2. An ability to effectively use the tools of the analysis for solving practical problems arising in engineering design.											
3.	3. To understand and solve the Finite Element 1-D structural and 2-D structural problems.											
4. To develop and understand the dynamic problems in structures												
5. To Gain the knowledge of FEM for heat transfer analysis and flow analysis												
UNI	ГΙ	INTRODUCTION		9	0	0	9					
Classi	ification of p	roblems - Dimensionality, time dependence, Boundary Value pro	oblems, Initial value	proble	ems, l	Linea	/Non-					
linear	etc., Histor,	cal Perspective of FEM and applicability to mechanical engineer	ring design problems	s. Dif	ferent	ial eq	uation					
as the	starting po	nt for FEM, steps in finite element method, discretization, types	of elements used, S	hape	funct	ions,	Linear					
Eleme	ents, Local	and Global coordinates, Coordinate transformation and Gauss- I	Legendre scheme of	nume	erical	integ	ration,					
Noda	degrees of	treedom. Compatibility conditions, Assembly and boundary cons	iderations.									
		ONE DIMENSIONAL DROPH ENG		0	0	0	0					
UNI	[1]	ONE DIMENSIONAL PROBLEMS		9	0	0	9					
Struct	ural problem	ns with one dimensional geometry. Formulation of stiffness m	atrix, consistent and	l lump	ped lo	oad v	ectors.					
Bound	dary conditi	ons and their incorporation: Elimination method, Penalty Method	l, Introduction to hig	her or	der e	lemer	ts and					
their a	advantages a	nd disadvantages. Formulation for Truss elements, Case studies	with emphasis on bo	ounda	ry coi	nditio	ns and					
introd	uction to c	ontact problems. Beams and Frames: Review of bending of be	eams, higher order o	contin	uity ((C0 a	nd C1					
Conti	nuity), inter	polation for beam elements and formulation of FE characterist	ics, Plane and space	fram	es an	d exa	mples					
proble	ems involvir	g hand calculations. Algorithmic approach for developing compu	iter codes involving	1-D e	lemer	nts.						
UNI	ΓШ	TWO DIMENSIONAL PROBLEMS		9	0	0	9					
Interp	olation in 1	wo dimensions, natural coordinates, Isoparametric representat	ion, Concept of Jac	cobiar	ı. Fin	ite el	ement					
formu	lation for p	ane stress plane strain and axi-symmetric problems; Iriangula	r and Quadrilateral	eleme	nts, ł	ngher	order					
dimer	nis, subpara	metric, isoparametric and superparametric elements. General con	siderations in finite e	elemei	nt ana	.1ys1s	ortwo					
anner		is. Introduction place bending elements and shen elements.										
TINIT	F 1 37			0	0	0	0					
		DYNAMIC ANALYSIS	11 1	9		0	9					
FE for	rmulation in	dynamic problems in structures using Lagragian Method, Consist and a function and introduction to the solution proceeding. Mode	tent and lumped mas	ss moo	dels, l	form	lation					
of dar	nning matri	es Model analysis Mode superposition methods and reduction t	echniques	mping	g and	Ioriiu	nation					
or dur	inping mutri		coninques.									
TINIT	F X 7	FEM IN HEAT TO ANOTED & FLUID MECHANICO		0	0	0						
		9	0	U	9							
Finite	imple num	ition for one dimensional heat conduction with convective bounds	ries. Formulation of	eleme	ent ch	aracte	ristics					
Introd	luction to the	ermo-elastic contact problems. Finite element applications in pote	ential flows. Formula	tion h	ased	on Po	tential					
functi	on and strea	m function. Design case studies	indui nows, i orman	aron o	useu	01110	tentiai					
			ΤΟΤΑΙ (45T)	. 15	DFD	IUUU					
			IUIAL(+3L)	. 43	IEK	1008					
REF	ERENCES	:										
1.	. K. J. B	athe, Finite Element Procedures, Prentice-Hall of India Private Li	mited, New Delhi, 1	996								
2	. J. C. Si	mo and T. J. R. Hughes, Computational Inelasticity, Springer-Ve	rlag New York, Inc.,	New	York	, 1998	3					

3.	Cook and Robert Davis etal, "Concepts and Applications of Finite Element Analysis", 4th Edition, John Wiley and Sons, 2001.
4.	Segerlind L.J, "Applied Finite Element Analysis", 2nd Edition, John Wiley, 1984.
5.	O. C. Zienkiewicz and R. L. Taylor, Finite Element Method: Volume 2 Solid Mechanics, Fifth Edition, Butterworth-Heinemann, Oxford,

COUR Upon c	Bloom Taxonomy Mapped		
C01	Understand the concept of the finite element method for solving design problems.	Apply	
<i>CO2</i>	Formulate and solve manually problems in 1-D structural systems involving bars, trusses, beams and frames.	Apply	
СО3	Develop 2-D FE formulations involving triangular, quadrilateral elements, and higher- order elements	Create	
<i>CO</i> 4	Apply the knowledge of FEM for stress analysis, model analysis, heat transfer analysis and flow analysis	Apply	
<i>CO</i> 5	Apply the knowledge of FEM for heat transfer analysis and flow analysis	Apply	

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	3	1	0	0	0	1	1	0	0	0	1	2	0
CO2	3	1	3	3	3	0	0	1	1	0	0	0	0	0	3
CO3	3	1	3	3	2	0	0	1	1	0	0	0	0	0	0
CO4	3	2	3	3	2	0	2	2	1	0	0	0	1	2	0
CO5	3	1	1	1	1	0	0	0	1	0	0	0	1	1	0
Avg	3.0	1.2	2.6	2.2	1.6	0.0	0.4	1.0	1.0	0.0	0.0	0.0	0.6	1.0	0.6
3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)															