22MEHO205	DESIGN OPTIMIZATION & DESIGN THI	EORY				
PREREQUIS	ITES	CATEGORY	L	Т	Р	C
		PE	3	0	0	3
COURSE OB	JECTIVES:					
1. The prim into math	ary objective of this course is for students to gain knowledge to tran ematical optimization problems that can be solved using numerica	slate practical engin l methods for optimi	eering zatior	g desig	gn pro	oblems
UNIT I	9	0	0	9		
General Charact objective functi techniques	eristics of mechanical elements, adequate and optimum design, pr on, design constraints, and classification of optimization problem	inciples of optimizat ms. Single and mul	tion, f	ormul able c	ation	of the
	DESIGN OPTIMIZATION TECHNIQUE			0		
UNITII	DESIGN OPTIMIZATION TECHNIQUE		9	0	0	9
The technique o methods, and eq	funconstrained minimization. The golden section, Random, Pattern, uality and inequality constraints.	, and Gradient search	meth	ods, i	nterpo	olatior
UNIT III	PROGRAMME		9	0	0	9
Direct methods programming, C	and indirect methods using penalty function, Lagrange multip	liers, Geometric pr	ogram	nming	, sto	chastic
UNIT IV ENGINEERING APPLICATION					0	9
Engineering apj weight. Design	blications, structural-design application axial and transverse load of shafts and torsion members, design optimization of springs.	ed members for min	nimun	1 cost	:, maz	ximun
UNIT V	DYNAMICS APPLICATION		9	0	0	9
Dynamics appli	ations for a two-degree freedom system. Vibration absorbers. App	lication in mechanis	ms.			
		TOTAL(45L)	: 45	PER	IODS
TEXT BOOK	S: Page Engineering Ontimization: Theory and Practice 4th ad	ition John Wilay	<u>e 50</u>	ng 7	000	ICDN
1. 0470	83527.		<u>2005</u>	118, 2		ISDIN
2. Kalya	nmoy Deb, "Optimization for Engineering Design", Prentice Hall	of India, New Delhi,	, 2005			
REFERENCI	S:					
1. R.C.	Johnson, "Optimum Design of Mechanical Elements", Willey, Nev	v York, 1980				
2. Kalya	nmoy Deb, "Evolutionary multi-objective optimization, Willey, N	ew York.				
3. S. S.	Stricker, "Optimising performance of energy systems" Battelle Pre	ss, New York, 1985.				
4. J. S. A	Arora, "Introduction to Optimum Design", McGraw Hill, New Yor	K, 1989.	000			
5. L.C.V 6 R.J. I	Duffin, E.L. Peterson and C.Zener "Geometric Programming-Theor	y and Applications"	, Will	ey, No	ew Y	ork,
0. 1967. 7. GBI	Dantzig "Linear Programming and Extensions Princeton University	Press", Princeton N	J. T. 1	963		
8. R. Be	Ilman "Dynamic Programming-Princeton" University Press, Princeton	eton, N.J. 1957.		/05		

COUR Upon c	Bloom Taxonomy Mapped	
CO1	Demonstrate An Understanding Of How Design Optimization Fits Into The Overall	Create
	Engineering Design Process	
CO2	Formulate Practical Engineering Design Problems As Well-Posed Optimization	Create
	Problems	
CO3	Determine The Advantages And Disadvantages Of Applying Different Optimization	Analyze
	Techniques For A Specific Problem	
CO4	Model And Analyze Multi objective And Multidisciplinary Optimization Problems	Analyze

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	3	1	0	0	0	0	0	0	2	2	2	0
CO2	2	2	3	3	1	0	0	0	0	0	0	2	2	2	0
CO3	2	2	2	3	1	0	0	0	0	0	0	2	2	2	0
CO4	2	2	2	3	1	0	0	0	0	0	0	2	2	2	0
Avg	2	2	2.5	3	1	0	0	0	0	0	0	2	2	2	0
3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)															