22MEHO204	0204 INTRODUCTION TO MACHINE LEARNING									
PREREQUIS	ITES	CATEGORY	L	Т	Р	С				
Machine learnin good backgroun experience is ess	3	0	0	3						
COURSE OB.	JECTIVES:									
1. Understa 1. algorithm applying	nd a wide variety of learning algorithms. Understand how to evalue s to a real problem, optimize the models learned and report on the the models.	uate models generate e expected accuracy	ed from that ca	n data in be a	a. App achiev	oly the ved by				
UNIT I	INTRODUCTION		9	0	0	9				
Introduction: B hypothesis space	asic definition-types of learning-designing a learning system-pe and inductive bias- evaluation-cross-validation.	erspective and issue	s in n	nachir	ne lea	rning-				
UNIT II	JNIT II CONCEPT LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING									
Introduction-a c candidate elimin	oncept task, concept learning as search-find S: finding a maximally ation algorithm-remarks on version spaces and candidate eliminat	y specific hypothesis ion-inductive bias.	- versi	on spa	aces a	nd the				
UNIT III	DECISION TREE LEARNING		9	0	0	9				
learning. UNIT IV	Irning. NIT IV ARTIFICIAL NEURAL NETWORKS									
Introduction-neu and the back pr advanced topics	ral network representation-appropriate problems for neural network opagation algorithm-remarks on the back propagation algorithm in artificial neural networks.	k learning- perceptro n-an illustrative exam	ns- mu nple:	iltilay face	ver net recog	works nition,				
UNIT V	IT V LEARNING SYSTEM					9				
Probability and inearest neighbor complexity-VC	Bayes learning, bayes optimal classifier, gibbs algorithm, Naïve b ur learning - locally weighted regression, Computational learn Dimension -Ensemble learning, analytical learning-learning with p	payes classifier, insta ning theory-PAC le perfect domain theory	ince b arning ies: pr	ased 1 g mod olog –	earnii lel -S -EBG	ng - K ample				
		TOTAL(45L)	: 45	PER	IODS				
REFERENCE										
1. Mach	ine Learning. Tom Mitchell. First Edition, McGraw-Hill, 1997.									
3. T. Ha	stie, R. Tibshirani, and J. Friedman. The Elements of Statistical Le	earning. Springer 20	l 1. (A	vailab	ole for					
4. Kevin	P. Murphy. Machine Learning: A Probabilistic Perspective, MIT	Press 2012. (Electro	nic co	py av	ailabl	e				
1 µn ous	on the Rodleian library)									

COUR Upon c	Bloom Taxonomy Mapped	
C01	Have a good understanding of the fundamental issues and challenges of machine learning: data, model selection, model complexity, etc.	Understand
<i>CO2</i>	Have an understanding of the strengths and weaknesses of many popular machine learning approaches.	Understand
<i>CO3</i>	Appreciate the underlying mathematical relationships within and across Machine Learning algorithms and the paradigms of supervised and un-supervised learning.	Understand
<i>CO4</i>	Be able to design and implement Artificial Neural Networks algorithms in a range of real-world applications.	Create
<i>C05</i>	Be able to design and implement various machine learning algorithms in a range of real- world applications.	Create

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	0	1	3	0	0	0	0	0	0	1	2	2	0
CO2	2	2	0	1	3	0	3	0	0	0	0	1	2	2	0
CO3	2	2	0	1	3	0	0	0	0	0	0	1	2	2	0
CO4	2	2	0	1	3	0	3	0	0	0	0	1	2	2	0
CO5	2	2	0	1	3	0	3	0	0	0	0	1	2	2	0
Avg	2	2	0	1	3	0	1.8	0	0	0	0	1	2	2	0
3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)															