22MEHO202	ADVANCED FLUID MECHANICS										
PREREQUISI	L	T	P	C							
		PE	3	0	0	3					
				·							
COURSE OBJ	ECTIVES:										
1. Enhanced	understanding of fluid mechanics, including the equations of moti	on in differential for	rm, an	ıd turb	oulenc	e.					
UNIT I	I										
Eulerian and Lag	grangian Description of Fluid Motion, Lines of Flow Visualiz	ation and Accelerat	tion c	of Flor	w, Ai	ngular					
Education in Integ	gral Form Stream Function and Velocity Potential.	ives nom mass co	inser v	ation,	Com	inuity					
			1	1							
UNIT II	VISCOUS FLUID FLOW		9	0	0	9					
Reynolds Transpo control volume, R Cauchy/Navier eq	eynolds transport theorem angular momentum Conservation, Reyn uation, Navier Stokes equation.	olds transport theor oduction to traction v	em an vector	and st	tress t	ensor,					
UNIT III	NIT III FLUID DYNAMICS										
Lubrication Theor	y, Thin Film Dynamics, Stokes Flow past a Sphere.		•								
UNIT IV	TURBULENCE		9	0	0	9					
Introduction to Tu Layer Theory, Si Integral Method a	arbulence, Statistical Treatment of Turbulence and Near - Wall V milarity Solution of Boundary Layer Equation, Momentum Inte nd Boundary Layer Separation, Potential Flow.	Velocity Profiles, Int egral Method, App	troduc	tion to on of	o Bou Mome	indary entum					
UNIT V	IT V COMPRESSIBLE FLOWS					9					
Stagnation proper Compressible Flo	ties, Compressible Flows - variable area- Normal Shock- Converg w with Friction.	ing Nozzle- Converg	ging D	Diverg	ing N	ozzle-					
		ΤΟΤΑΙ (451.)	• 45]	PFRI	IODS					
		TOTAL	1 5L)	• •• •		UD 5					
TEXT BOOKS	:										
1. Rouse,	H. (1957), "Advanced Fluid Mechanics", John Wiley & Sons, N	York									
2. Mohan	ty A.K. (1994), "Fluid Mechanics", Prentice Hall of India, N Dell	hi									
REFERENCES	ð:										
1. Wand I	D.J., and Harleman D.R. (91964) "Fluid Dynamics", Addison We	sley.									
2. Schlich	ting, H.: (1976) "Boundary Layer theory", International Text – B	utterworth									
3. Lanto,	E M (1000) "Viscous Eluid Elow" McCrow Lill Dub. Co. N.V	-12									
4. White,	T.W. (1700) VISCOUS FILID FION, INCOTAW HILL PUD. CO, N YOL	Λ									
5. ^{Y alln, J}	vi.s.(1971), Theory of Hydraune Models", McMillan Co., 1971.										

COUR Upon c	Bloom Taxonomy Mapped		
C01	Explain the fundamental concepts of fluid Fluid flow.	Understand	
<i>CO2</i>	Apply the Bernoulli to solve problems related to Viscous fluid flow.	Apply	
<i>CO3</i>	Device the concepts of fluid dynamics in various geometry.	Create	
<i>CO4</i>	Depict the turbulence of fluid Fluid flow.	Analyze	
<i>CO5</i>	Interpret the knowledge for Compressible Flows in various geometrical configuration.	Evaluate	

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	0	0	0	0	0	0	0	1	2	2	0
CO2	3	3	2	3	0	0	0	0	0	0	0	1	2	2	0
CO3	3	3	2	3	3	0	0	0	0	0	0	1	2	2	0
CO4	3	3	2	3	0	0	0	0	0	0	0	1	2	2	0
CO5	3	3	2	3	3	0	0	0	0	0	0	1	2	2	0
Avg	3	3	2	3	1.2	0	0	0	0	0	0	1	2	2	0
3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)															