22MEHO102		THERMAL MANAGEMENT OF ELECTRIC										
		BATTERY SYSTEMS										
			CATEGORY	L	T	P	C					
			PE	3	0	0	3					
COUI	RSE OBJEC	TIVES										
1	To know Th	ermal Management of Electric Vehicle Battery Systems										
2	To recogniz	e the applications of PC Min Thermal Management										
,	To investiga	igate the Thermal behaviors in Electric Vehicle Battery Systems through Simulation and										
3	Experimenta	ntal										
4	To calculate	o calculate the Energy and Exergy Analyses of Battery TMSs										
5		utions for case Studies on Thermal Management Solutions	of Electric batteries									
	•	-										
UN	IT I	INTRODUCTION		9	0	0	9					
Introdu	iction, Curren	t Battery Technologies: Lead Acid Batteries, Nickel C	admium Batteries,	Nicke	1 Me	tal H	ydride					
		on Batteries, Battery Environmental Impact, Battery Mana					-					
Diagno	sis/ Thermal M	Management.	· ·	•	_							
TINI		PHASE CHANGE MATERIALS FOR THERMA	L MANAGEMEN	TI								
UN		SYSTEMS		` 1 9	0	0	9					
Basic I	Properties and	Types of PCMs, Organic PCMs, Inorganic PCMs, Measure	ement of Thermal Pro	operti	es of	PCM	s, Heat					
Transf	er Enhanceme	nts, Environmental Impact of Phase Change Materials, App	lications of PCMs.									
UN		SIMULATION AND EXPERIMENTAL INVEST	IGATION OF	g	0	0	9					
		BATTERY TMS			Ĭ							
		evelopment for Cell and Submodules, Cell and Module Le										
	e Level Exper	imentation Set Up and Procedure, Illustrative, Simulation	and Experimentation	is on	tne n	quia	battery					
TIVID U	ising i Civis											
UNI	IT IV	ENERGY AND EXERGY ANALYSES OF BATT	ERY TMS	g	0	0	9					
		Modeling of Major TMS Components, Energy and Exe		otiva								
	•	nagement Systems	igy Anaryses, inustr	ative	LAai	npic.	Liquid					
Battery	Thermal ivial	agement bystems										
		CASE STUDIES ON THERMAL MANAGEMEN	NT SOLUTIONS)F								
UN	1 I V	ELECTRIC BATTERIES	(I SOLO HOLE)	9	0 0	0	9					
Case S		mental and Theoretical Investigation of Temperature Dist	ributions in a Prisma	tic Li	thiun	ı- Ion	-					
Battery	•											
_		Management Solutions for Electric Vehicle Lithium- Id	on Batteries based o	n Vel	nicle	Char	ge and					
	rge Cycles	5				•						
			TOTAL(45)	L):4	5 PI	ERIO	DS					
REF	ERENCE BO											
1		ger, Halil S. Hamut, Nader Javani, Thermal Management of										
2		Hamut, Nader Javani, Ibrahim Dinçer, Thermal	Management of	f El	ectric	· Ve	ehicle					
		ms,Wiley,2016 hen, Rui Xiong, Advanced Battery Management Te	ahnalagias for Ela	otrio	Vohi	alas	Iohn					
3	_	nen, Kui Along, Advanced Battery Management Te is, First edition 2019	cimologies for Ele	CHIC	v em	CICS,	JOHH					
		anjeevikumar Padmanaban, Jens Bo Holm-Nielsen, Artific	cial Intelligent Techn	iques	for I	Electri	c and					
4	Hybrid Elect	ric Vehicles, John Wiley and sons, First edition 2020		•								
5	Bruno Scros	sati, Jurgen Garche, Werner Tillmetz, Advances in Bat	ttery Technologies 1	or E	lectric	· Vel	icles,					

COUR Upon o	Bloom Taxonomy Mapped		
CO1	Describe and analyze the techniques of Thermal Management of Electric Vehicle Battery Systems	Analyze	
CO2	Describe and classify various applications of PCM in Thermal Management	Understand	
СОЗ	Investigate the Thermal behaviors in Electric Vehicle Battery Systems through Simulation and Experimental	Analyze	
CO4	Calculate the Energy and Exergy Analyses of Battery TMSs	Analyze	
CO5	Identify the solutions for case Studies on Thermal Management Solutions of Electric batteries	Analyze	

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	0	0	2	0	1	0	0	0	0	0	1	0	0
CO2	3	2	1	0	1	0	1	0	0	0	1	0	2	0	0
CO3	3	2	2	3	1	0	1	0	0	0	1	0	2	0	0
CO4	3	2	1	2	1	1	0	0	0	0	1	0	2	0	0
CO5	3	3	0	0	1	2	1	1	1	1	1	0	2	0	0
Avg	2.8	2.2	0.8	1	1.2	0.6	0.8	0.2	0.01	0.01	0.04	0.0	1.8	0.0	0.0
3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)															