Government College of Engineering, Salem - 11 Department of Metallurgical Engineering M.E. - WELDING TECHNOLOGY COs - POs and PSO Mapping Course Articulation Matrix - 18 Regulation

			S	Seme	ester	- I										
	18WTC11	-Adv	7anc	ed N	lathe	mat	ics a	and	stat	istic	s					
						Prog	ram C	Jutco	mes					P: S Ou	rogra: pecifi itcom	m ic ies
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Obtain the numerical solution of linear and non-linear equations and fitting curves by method of least squares.	2	2	2	2	2	-	-	-	-	-	-	-	1	-	_
2	Obtain the solutions of diffusion and wave equation involved in engineering problems by using Laplace and Fourier transform techniques.	2	2	2	1	2	_	_	_	_	_	_	_	1	_	_
3	Gain the knowledge on statistical sampling and its applications, analysis of variance by one and two wayclassification.	2	2	2	2	2	_	_	_	-	_	_	_	1	_	_
	Average	2	2	2	1.67	2	-	-	-	-	-	-	-	1	-	-

			S	eme	ster	- I										
	1	8W1	r c 12	2-We	ldin	g Pr	oces	ses-	·I							
						Prog	ram (Outco	omes	_			-	P S Ou	rogra: pecifi itcom	m ic ies
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Identify and list the broad classification of various welding processes.	2	2	_	2	2	2	_	-	-	-	-	_	2	-	_
2	Explain the principle of operation, advantages, limitations and applications of SMAWprocess.	2	2	-	2	2	2	-	-	-	-	-	-	2	-	-
3	Explain the principle of operation, advantages, limitations and applications of GTAW and PAW processes.	2	2	-	2	2	2	-	-	-	-	-	-	2	-	-
4	Explain the principle of operation, advantages, limitations and applications of GMAW and FCAWprocesses.	2	2	-	2	2	2	-	_	-	-	-	-	2	-	_
5	Explain the principle of operation, advantages, limitations and applications of SAW, SW and CAW processes.	2	2	-	2	2	2	-	-	-	-	-	-	2	-	-
	Average	2	2	-	2	2	2	-	-	-	-	-	-	2	-	-

			S	eme	ester	: - I										
	18WT	E11	-Ele	ctric	cal A	spe	cts c	of We	eldin	ıg						
						Prog	gram	Outco	omes					P: S Ou	rogra pecif itcon	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Explain the static and dynamic characteristics of electric arc and its associated powercharacteristics.	2	2	-	2	2	2	-	-	-	-	-	-	1	_	-
2	Select the right choice of welding power sources.	2	2	-	2	2	2	-	-	-	-	-	-	1	-	-
3	Recognize and list the wire feed systems and seam tracking devices.	2	2	-	2	2	2	-	-	-	-	-	-	1	-	-
4	Measure the welding current, voltage, temperature, load and displacement.	2	2	_	2	2	2	-	-	_	-	-	-	1	-	-
5	To gain knowledge in electrical measurements in welding and special power sources.	2	2	-	2	2	2	-	-	-	-	-	-	1	-	-
	Average	2	2	-	2	2	2	-	-	-	-	-	-	1	-	-

			S	eme	ster	- I										
	18CS101-Fundam	enta	als o	f Pro	oble	m So	olvin	ig an	ld C	Pro	gran	nmir	ıg			
						Prog	gram	Outco	omes					P S Ou	rogra: pecifi itcon	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Formulate and apply logic to solve basic problems.	1	1	-	1	1	-	-	-	-	-	-	-	1	-	-
2	Write, compile and debug programs in C language.	1	1	-	1	1	-	-	-	-	_	-	-	1	_	-
3	Apply the concepts such as arrays, decision making and looping statements to solve real time applications	1	1	-	1	1	-	-	-	-	-	-	-	1	-	-
4	Solve simple scientific and statistical problems using functions and pointers	1	1	-	1	1	-	-	-	-	-	-	-	1	-	-
5	Write programs related to structures and unions for simple applications.	1	1	-	1	1	-	-	-	-	-	-	-	1	-	-
	Average	1	1	-	1	1	-	-	-	-	-	-	-	1	-	-

			S	eme	ster	- I										
	18	3WT	E12	-Des	ign	Of W	/eldı	men	ts							
						Prog	gram	Outco	omes					P: S Ou	rogra pecif itcom	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Gain knowledge on design basics of the welding operations.	2	2	-	2	2	_	_	-	-	-	_	-	1	_	-
2	Gain knowledge on the weld design for static loading processes.	2	2	-	2	2	-	-	-	-	-	-	-	1	-	-
3	Gain knowledge on the weld design for dynamic loading processes.	2	2	-	2	2	-	-	-	-	-	-	-	1	-	-
4	Gain detailed knowledge on factors influencing the distortion and residual stresses.	2	2	-	2	2	-	-	-	-	-	-	-	1	-	-
5	Get familiarized in the failure analysis sector.	2	2	-	2	2	-	-	-	-	-	-	-	1	-	-
	Average	2	2	-	2	2	-	-	-	-	-	-	-	1	-	-

			S	eme	ester	- I										
	18WTE13-We	ldin	g Ec	onoi	mics	, Ma	nag	eme	nt a	nd S	Safet	y				
				_		Prog	gram (Outco	omes	_	_	_		P: S Ou	rogra pecifi itcom	m ic ies
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	To gain knowledge on various factors influencing the welding cost.	-	-	-	-	-	1	1	1	1	1	1	1	1	-	-
2	Able to estimate the standard welding time using various methods for the welding process .	-	_	-	-	-	1	1	1	1	1	1	1	1	-	-
3	Able to calculate the welding cost for the different welding process.	-	-	-	-	-	1	1	1	1	1	1	1	1	-	-
4	Able to gain knowledge on various requirements on setting up a welding plantlayout.	-	_	-	-	-	1	1	1	1	1	1	1	1	-	_
5	To gain knowledge on safety measures during welding processes and planning operations.	-	-	-	-	-	1	1	1	1	1	1	1	1	-	_
	Average	-	-	-	-	-	1	1	1	1	1	1	1	1	-	-

			S	eme	ester	: - I										
	187	VTE	21-N	late	rials	. And	1 Be	havi	our							
					_	Prog	gram	Outco	omes					P: S Ou	rograi pecifi itcom	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Understand the formation of solid solutions, construct the phase diagrams and understand the heat treatment of steels using TTT and CCT diagrams.	1	1	-	1	-	-	-	-	-	-	-	-	1	1	-
2	Understand the principal effects on properties of the major alloying elements used in steels and analyse the basic structure and properties of different types of cast irons.	1	1	-	1	-	-	-	-	-	-	-	-	1	1	_
3	Gain knowledge on the properties and applications of some important non-ferrousmetals such as Cu, Al, Ti, Ni, Mg and their alloys.	1	1	-	1	-	-	-	-	-	-	-	-	1	1	-
4	Explain the various fracture and mechanisms for different fractures, the fracture toughness and the various theories describing it.	1	1	-	1	-	-	-	-	-	-	-	-	1	1	-
5	Define and elaborate the Stress cycles, S-N curves, fatigue testing machines; state the Creep curve, creep mechanisms, metallurgical factors affecting creep and explain about creep testing machines	1	1	-	1	-	-	-	-	-	-	-	-	1	1	-
	Average	1	1	-	1	-	-	-	-	-	-	-	-	1	1	-

			S	eme	ster	- I										
	18WTI	E22-	Fail	ure .	Anal	ysis	in V	Veld	men	ts						
						Prog	ram (Outco	omes					P S Ou	rogra pecifi itcom	m ic ies
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Understand the concepts of types of failures and analysis	2	2	-	2	2	-	-	-	-	-	-	1	2	2	-
2	Learn the various factors affecting/causing failures of weldments	2	2	-	2	2	-	_	-	-	-	_	1	2	2	_
3	Design new materials that can with stand failures, especially in weldments considering different environment.	2	2	-	2	2	-	-	-	-	-	-	1	2	2	_
4	To understand failure in welded products.	2	2	-	2	2	-	-	-	-	_	-	1	2	2	-
5	To learn various concepts in reliability.	2	2	-	2	2	-	-	-	-	-	-	1	2	2	-
	Average	2	2	-	2	2	-	-	-	-	-	-	1	2	2	-

			S	eme	ster	- I										
	18	WTI	E23-	Non	Met	allic	: ma	teri	als							
			-	-	_	Prog	gram	Outco	omes	_	_		_	P S Ou	rogra: pecifi itcom	m ic ies
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Gain knowledge on polymers and select different polymer materials for variousapplications.	2	2	-	2	1	-	-	-	-	-	-	-	2	2	-
2	Understand different methods to synthesize polymer materials.	2	2	-	2	1	-	-	-	-	-	-	-	2	2	-
3	Know the structure and properties of different ceramics.	2	2	-	2	1	-	-	-	-	-	-	-	2	2	-
4	Understand the properties and applications of important ceramic materials and glass.	2	2	-	2	1	-	-	-	-	-	-	-	2	2	-
5	Emphasis the need of modern materials like composites over conventional metal and alloys.	2	2	-	2	1	_	_	-	_	_	-	_	2	2	-
	Average	2	2	-	2	1	-	-	-	-	-	-	-	2	2	-

			S	eme	ster	- I										
		1	8W7	C 14	-We	ldin	g La	b								
						Prog	gram (Outco	omes					P S Ou	rogra: pecifi itcom	m ic ies
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Generate arc in different welding machines for various welding processes.	-	-	2	2	1	1	_	_	-		_	-	2	2	-
2	Identify the process parameters and their effects during welding	-	-	2	2	1	1	-	-	-		-	-	2	2	-
3	Selection of process parameters for bead practices	-	-	2	2	1	1	-	-	-		-	-	2	2	-
4	Perform welding to produce butt and fillet joints.	_	-	2	2	1	1	-	-	-		-	-	2	2	-
5	Identity the anomalies in weld bead.	-	_	2	2	1	1	-	_	-		-	-	2	2	-
	Average	-	_	2	2	1	1	-	_	-		-	-	2	2	-

			S	eme	ester	- I										
	18MLC	201-	Rese	arcl	h Me	tho	dolo	gy a	nd I	PR						
						Prog	gram	Outco	omes					P S Ou	rogra: pecifi itcom	m ic ies
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Understand research problem formulation.	-	-	-	-	-	1	1	1	1	1	1	1	-	-	1
2	Analyze research related information	-	_	-	-	-	1	1	1	1	1	1	1	-	-	1
3	Follow research ethics	-	-	-	-	-	1	1	1	1	1	1	1	-	-	1
4	Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.	_	-	-	-	-	1	1	1	1	1	1	1	_	-	1
5	Understand that IPR protection provides an incentive to inventors for further research workand investment in R & D, which leads to creation of new and better products, and in turnbrings about, economic growth and social benefits.	-	_	-	-	-	1	1	1	1	1	1	1	_	-	1
	Average	-	-	-	-	-	1	1	1	1	1	1	1	-	-	1

			S	eme	ster	- II										
	1	8W1	°C21	-We	ldin	g Pro	oces	ses-	II							
						Prog	ram (Outco	omes					P: S Ou	rogra: pecifi itcom	m ic ies
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Explain the principle of operation, advantages, limitations and applications of various solid state welding processes.	2	2	-	2	2	1	-	-	-	-	-	-	2	-	1
2	Explain the principle of operation, advantages, limitations and applications of FRW and FSW processes.	2	2	-	2	2	1	-	-	-	-	-	-	2	-	1
3	Explain the principle of operation, advantages, limitations and applications of EBW and LBW processes.	2	2	-	2	2	1	_	_	_	-	-	-	2	-	1
4	Explain the principle of operation, advantages, limitations and applications of ESW and Resistance welding processes.	2	2	-	2	2	1	-	-	-	-	-	-	2	-	1
5	Explain the principle and features of various special joining techniques and thermalcutting methods.	2	2	-	2	2	1	-	-	-	-	-	-	2	-	1
	Average	2	2	-	2	2	1	-	-	-	-	-	-	2	-	1

			S	eme	ster	- II										
		18W	TC2	2-We	eldin	g M	etall	lurg	y							
			_	_	_	Prog	ram (Dutco	omes		_	_	_	Pi Sj Ou	rogra pecif itcon	m ic nes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	To understand heat flow in welding, structures formed and effect of various parameters.	2	2	-	2	2	1	-	-	-	-	-	-	2	2	-
2	To gain knowledge in various types of weldability tests.	2	2	-	2	2	1	-	-	-	-	-	-	2	2	-
3	Toknowaboutweldabilityofcarbonsteelsa ndlowalloysteelsandweldabilityissues.	2	2	-	2	2	1	-	-	-	-	-	-	2	2	-
4	To understand welding of stainless steels.	2	2	-	2	2	1	-	-	-	-	-	-	2	2	-
5	To get familiar in the area of welding of cast iron.	2	2	-	2	2	1	-	-	-	-	-	-	2	2	-
	Average	2	2	-	2	2	1	-	-	-	-	-	-	2	2	-

			S	eme	ster	- II										
	18WTE31	-Tes	sting	g Ano	d In	spec	tion	of v	veldn	ıent	s					
						Pro	gram (Outco	omes					ף S 01	rogra pecif itcor	ım fic nes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Understand the basics and overview of destructive testing such as tensile test, impact test and hardness test.	2	2	-	2	2	-	-	-	-	-	-	-	2	2	-
2	Understand the recent developments, modifications and applications in surface NDTand apply them in real time problems associated with failure analysis and regular testing for industries.	2	2	_	2	2	_	-	-	-	-	-	-	2	2	-
3	Know about X ray radiography and gamma ray radiography in detail.	2	2	-	2	2	-	-	-	-	-	-	-	2	2	-
4	Gain knowledge about ultrasonic inspection and related details	2	2	-	2	2	-	-	-	-	-	-	-	2	2	_
5	Troubleshoottheproblemsinvolvedonthesh opfloorinfabricationindustrieswiththe help of knowledge in codes, standards and specifications.	2	2	-	2	2	-	-	-	-	-	-	-	2	2	-
	Average	2	2	-	2	2	-	-	-	-	-	-	-	2	2	-

			S	eme	ster	- II										
	18	WTE	32-F	rinit	e El	eme	nt A	naly	vsis							
				_		Prog	gram	Outco	omes	_	_	_	_	P S Ou	rogra: pecifi itcom	m ic ies
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Demonstrate understanding of FE formulation for axi- symmetric problems in heat transfer and elasticity	1	1	-	1	1	1	-	-	-	-	-	-	1	-	_
2	To identify the primary and secondary variables of the problem and choose correct nodal degrees of freedom and develop suitable shape functions for an iso-parametric element.	1	1	_	1	1	1	_	_	_	_	_	-	1	-	_
3	Able to solve contact problems by using the techniques of non-linear equations of equilibrium	1	1	-	1	1	1	-	-	-	-	-	-	1	_	_
4	Understand to solve the dynamic flow problems by iterative methods	1	1	-	1	1	1	-	-	-	-	-	-	1	-	-
5	Solve non-Newtonian Flow-Navier Stokes Equation by FE equations.	1	1	-	1	1	1	-	-	-	-	-	-	1	_	-
	Average	1	1	-	1	1	1	-	-	-	-	-	-	1	-	-

			S	eme	ster	- II										
	18WTE33-	Tota	al Qı	ualit	y Sy	vster	n an	d E	ngin	eeri	ng					
						Prog	gram	Outco	omes					P: S Ou	rogra pecif itcom	m ic ies
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Analyse quality and cost of the systems	-	-	-	-	-	1	1	1	1	1	1	1	1	-	-
2	Gain knowledge on the different quality auditing systems	-	-	-	-	-	1	1	1	1	1	1	1	1	-	-
3	Gain knowledge on the different techniques and concepts of Total QualityManagement.	-	-	-	-	-	1	1	1	1	1	1	1	1	-	-
4	Analyse different Statistical process for quality control.	-	-	-	-	-	1	1	1	1	1	1	1	1	-	-
5	Solve problems on different sampling methods	_	-	-	_	-	1	1	1	1	1	1	1	1	_	-
	Average	-	-	-	-	-	1	1	1	1	1	1	1	1	-	-

			S	eme	ster	- II										
	18W	TE4	1-M	ateri	ials	Chai	acte	eriza	tion	L						
			-	-		Prog	gram	Outco	omes		-		_	P S Ou	rogra: pecifi itcom	m ic ies
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Know the principles of metallurgical microscope, X-ray Diffractometer (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Thermal analysis and dilatometer.	2	2	-	2	2	_	_	_	_	-	_	1	2	-	1
2	Describe the various sample/specimen preparation techniques for XRD, SEM, TEM and thermal analysis and quantitative metallography	2	2	-	2	2	-	-	-	-	-	-	1	2	-	1
3	Determine crystal structure, lattice parameter, phase identification, solvus line estimation and residual stress analysis using XRD	2	2	-	2	2	-	-	-	-	-	-	1	2	-	1
4	Select the appropriate tool to characterize the material by knowing its merits and demerits.	2	2	-	2	2	-	-	-	-	-	-	1	2	-	1
5	Analyze the material in lattice level by using different modes of TEM like bright and dark field imaging, selected area diffraction and microchemical analyses.	2	2	-	2	2	-	-	-	-	-	-	1	2	-	1
6	Evaluation of the specimen chemical and thermal analysis advanced methods.	2	2	-	2	2	-	-	-	-	-	-	1	2	-	1
	Average	2	2	-	2	2	-	-	_	-	_	-	1	2	-	1

			S	eme	ster	- II										
	18WTE4	2-Au	ıtom	atio	n Aı	nd R	obot	ts in	We	lding	g					
						Prog	ram	Outco	omes					P: S Ou	rogra pecif itcon	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Gain knowledge on automation of the arc welding processes.	2	2	-	2	2	1	-	-	-	-	-	_	2	_	-
2	Gain knowledge on the different kinds of welding processes.	2	2	-	2	2	1	-	-	-	-	-	_	2	-	-
3	Gain knowledge on the welding equipment and work motions of the automateddevices.	2	2	-	2	2	1	-	-	-	-	-	-	2	-	-
4	Gain detailed knowledge on standardized arc welding machines, controls andsensors.	2	2	-	2	2	1	-	-	-	-	-	-	2	-	-
5	Get familiarized in the area of Robotic Arcwelding.	2	2	-	2	2	1	-	-	-	-	-	_	2	-	-
	Average	2	2	-	2	2	1	-	-	-	-	-	_	2	-	-

			S	eme	ster	- II										
	18WTE	43-V	Veld	ing /	Appl	icat	ion '	Tecł	nol	ogy						
						Prog	gram	Outco	omes					P: S Ou	rogra: pecifi itcom	m ic ies
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Select the suitable welding procedures for the fabrication of structural elements and conventional pressure vessels and solve the difficulties in welding of pressure vesselsteels.	2	2	-	2	2	1	-	-	-	-	-	-	2	2	-
2	Choose the correct materials, electrodes, type of joint, welding processes and fittings for the fabrication of storage tanks, piping as well as pipelines.	2	2	-	2	2	1	-	-	_	-	_	-	2	2	_
3	Solve the pro <u>b</u> lems involved in welding of oil refinery components, fertilizer components and cryogenic materials.	2	2	-	2	2	1	-	-	-	-	-	-	2	2	-
4	Explain the shipbuilding activities and solve the problems involved in welding of submarine steels and railway materials.	2	2	-	2	2	1	-	-	-	-	-	-	2	2	-
5	Gain knowledge on materials used in Aerospace and Automobile components andtheir weldments	2	2	-	2	2	1	-	-	-	-	-	-	2	2	-
	Average	2	2	-	2	2	1	-	-	-	-	-	-	2	2	-

			S	eme	ster	- II										
	18WTC2	23-Q	Juali	ty C	onti	rol iı	n We	eldm	ent	Lab						
						Prog	gram	Outco	omes					P: S Ou	rogra pecif itcon	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Gain knowledge in practical aspects of welding gauges and their applications.	-	-	2	-	-	1	-	-	-	-	-	-	1	1	-
2	Hands on experience in Material testing and their sample preparation.	-	-	2	-	-	1	-	-	-	-	-	-	1	1	-
3	Exposure of Quality control documents - Read and understand the various reports	-	-	2	-	_	1	-	-	-	-	-	-	1	1	-
4	Read and understand welding documents (WPS, PQR &WPQ).	-	-	2	-	-	1	-	-	-	-	-	-	1	1	-
	Average	-	-	2	-	-	1	-	-	-	-	-	-	1	1	-

			S	eme	ster	- II										
	18WT	C24	-Mat	eria	l Ch	arac	teriz	zatio	on La	ab						
						Prog	ram (Outco	omes					P S Ou	rogra pecif itcom	m ic ies
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Observe and explain the Wulff net diagram, Stereographic projections and polefigure.	-	-	2	1	1	-	-	-	-	-	-	-	1	1	1
2	Interpret the DSC curves, analyse the SEM and TEM images of metal and alloys.	-	_	2	1	1	-	_	-	-	-	-	-	1	1	1
3	Determine the Volume fraction of phases using image analysis	-	-	2	1	1	-	-	-	-	-	-	-	1	1	1
4	Determine the nodularity and nodule count in cast iron.	-	-	2	1	1	-	-	_	-	_	-	_	1	1	1
5	Determine the corrosion rate of specimens by weight loss method	-	-	2	1	1	-	-	-	-	-	-	-	1	1	1
6	Analyse the effect of inhibitor on rate of corrosion	-	-	2	1	1	-	-	-	-	-	-	-	1	1	1
7	Evaluate the corrosion characteristics by Polarization method	-	-	2	1	1	-	-	-	-	-	-	-	1	1	1
	Average	-	-	2	1	1	-	-	-	-	-	-	-	1	1	1

			S	eme	ster	- II										
		1	8W1	°C25	5-Mi	ni Pı	ojec	t								
						Prog	gram	Outco	omes					P: S Ou	rogra: pecifi itcom	m ic ies
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Students will get an opportunity to work in actual industrial environment if they opt forinternship.	-	-	-	-	-	1	1	1	1	1	1	1	1	1	1
2	In case of mini project, they will solve a live problem using software/ analytical/ computational tools.	-	_	-	-	-	1	1	1	1	1	1	1	1	1	1
3	Students will learn to write technical reports.	-	-	-	-	-	1	1	1	1	1	1	1	1	1	1
4	Students will develop skills to present and defend their work in front of technically qualified audience.	-	_	_	-	_	1	1	1	1	1	1	1	1	1	1
	Average	-	-	-	-	-	1	1	1	1	1	1	1	1	1	1

			Se	emes	ster	- III										
	18WTE5	1-Co	orros	ion	and	Sur	face	Eng	inee	ering	5					
						Prog	gram (Outco	omes					P S Ou	rograi pecifi itcom	m ic ies
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Different types of corrosion and their mechanism	2	2	-	2	2	1	1	-	-	-	-	1	2	2	1
2	Estimate corrosion resistance by different tests	2	2	-	2	2	1	1	-	-	-	_	1	2	2	1
3	Understand corrosion behaviour of different metals at different conditions	2	2	-	2	2	1	1	-	-	-	-	1	2	2	1
4	Define different forms of processing techniques of surface engineering materialsSelect the type of deposition and spraying technique with respect to application	2	2	-	2	2	1	1	-	-	-	-	1	2	2	1
5	Select the type of deposition and spraying technique with respect to application.	2	2	-	2	2	1	1	-	-	_	-	1	2	2	1
	Average	2	2	-	2	2	1	1	-	-	-	-	1	2	2	1

•

			Se	emes	ster	– III										
	18WTE52-B	razi	ng, S	Sold	ering	g, Su	ırfac	ing	and	Cut	ting					
						Prog	gram (Outco	omes					P S Ot	rogra: pecifi itcom	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Explain the concepts of brazing and soldering.	2	2	-	2	2	1	1	-	-	-	-	1	2	2	1
2	Understand the fluxes and atmosphere for brazing and soldering.	2	2	-	2	2	1	1	-	-	-	-	1	2	2	1
3	To gain knowledge about brazing and soldering.	2	2	-	2	2	1	1	-	-	-	-	1	2	2	1
4	To understand surfacing techniques	2	2	-	2	2	1	1	-	-	-	-	1	2	2	1
5	To get familiar in the areas of thermal cutting processes.	2	2	-	2	2	1	1	-	-	-	-	1	2	2	1
	Average	2	2	-	2	2	1	1	-	-	-	-	1	2	2	1

Semester - III																
18WTE53-Welding Code sand standards																
	Program Outcomes										Program Specific Outcomes					
Course Outcomes			2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Identify various design requirements and applicability of AWS D1.1.	2	2	-	2	2	1	1	-	-	-	-	1	2	2	-
2	Apply API 1104 and AP15L for pipe welding applications.	2	2	-	2	2	1	1	-	-	-	-	1	2	2	-
3	Apply ASME II, V, VIII and IX for boiler fabrication.	2	2	-	2	2	1	1	-	-	-	-	1	2	2	-
4	Understand and apply WPS, PQR and performance qualification variables for aspecific welding application.	2	2	-	2	2	1	1	-	-	-	-	1	2	2	_
5	Understand different materials standard, testing methods and consumable testing.	2	2	-	2	2	1	1	-	-	-	-	1	2	2	_
Average			2	-	2	2	1	1	-	-	-	-	1	2	2	-

Semester - III																
18WTC31-DissertationPhase-1																
	Program Outcomes										Program Specific Outcomes					
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Students will be exposed to self-learning various topics.	-	-	-	1	1	-	1	1	1	1	1	1	1	1	1
2	Students will learn to survey the literature such as books, national/international refereed journals and contact resource persons for the selected topic of research.	-	-	-	1	1	_	1	1	1	1	1	1	1	1	1
3	Students will learn to write technical reports.	-	-	-	1	1	-	1	1	1	1	1	1	1	1	1
4	Students will develop oral and written communication skills to present and defend their work in front of technically qualified audience	-	-	-	1	1	-	1	1	1	1	1	1	1	1	1
Average			-	-	1	1	-	1	1	1	1	1	1	1	1	1

Semester - IV																
18WTC41-Dissertation Phase- II																
		Program Outcomes										Program Specific Outcomes				
Course Outcomes		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Students will be able to use different experimental techniques.	-	-	-	2	2	-	1	1	1	1	1	1	2	2	2
2	Students will be able to use different software/ computational/analytical tools.	-	-	-	2	2	-	1	1	1	1	1	1	2	2	2
3	Students will be able to design and develop an experimental set up/ equipment/testrig.	-	-	-	2	2	-	1	1	1	1	1	1	2	2	2
4	Studentswillbeabletoconducttestsonex istingsetups/equipmentsanddrawlogic al conclusions from the results after analyzing them.	-	-	-	2	2	-	1	1	1	1	1	1	2	2	2
5	Students will be able to either work in a research environment or in an industrialenvironment.	-	-	-	2	2	-	1	1	1	1	1	1	2	2	2
6	Students will be conversant with technical report writing.	-	-	-	2	2	-	1	1	1	1	1	1	2	2	2
7	Students will be able to present and convince their topic of study to the engineering community.	-	-	-	2	2	-	1	1	1	1	1	1	2	2	2
	Average	-	-	-	2	2	-	1	1	1	1	1	1	2	2	2