Government College of Engineering, Salem - 11 Department of Mechanical Engineering M.E. - Thermal Engineering COs - POs and PSO Mapping Course Articulation Matrix - 18 Regulation

			Sei	mest	ter -	Ι									
	18THC11 - 2	ſher	mod	lyna	mic	s Ar	nd C	omb	usti	on					
						Prog	ram (Outco	omes					Prog Spec Outc	ram cific omes
	Course Outcomes 1 2 3 4 5 6 7 8 9 10 11 12											1	2		
1	To impart the fundamental concepts about availability	2	1	_	1	-	1	1	-	-	-	2	3	2	1
2	To impart knowledge on real gas behaviour and different thermodynamic relationship.	1	3	2	2	2	2	-	-	-	-	2	2	2	2
3	To study the combustion principles and statistical interpretation of thermodynamic laws.	2	2	2	2	1	1	1	-	-	-	2	3	1	1
	Average	1.7	2	1.3	1.7	1	1.3	0.7	-	-	-	2	2.7	1.7	1.3

			Se	mes	ter	- I									
	18THC1	2 - 2	Adv	ance	ed F	luid	Dy	nan	nics						
						Prog	ram	Outc	omes	5				Prog Spec Outc	ram cific omes
	Course Outcomes 1 2 3 4 5 6 7 8 9 10 11 12												1	2	
1	To understand the fundamental equation for fluid flow.	2	2	2	2	2	1	1	1	-	-	1	2	3	_
2	To impart knowledge to find solution for Navier stokes equation	3	1	1	-	1	1	-	-	-	-	1	2	3	-
3	To understand the concept of boundary layer and find solution for boundary layer equation.	3	2	2	2	2	1	1	-	-	-	1	2	2	1
	Average	2.7	1.7	1.7	1.3	1.7	1	0.7	0.3	-	-	1	2	2.7	0.3

			Se	mes	ter -	Ι									
	18TH	IC13	- T	hern	nal I	abo	rato	ry- I							
						Prog	ram C	Dutco	mes					Prog Spec Outc	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	Understand the concepts of thermal conductivity.	1 2 3 4 3 6 7 6 9 10 11 12 1 - 1 3 3 2 1 - 2 - 2 2									2	3			
2	Understand the concepts of forced and natural convection.	2	-	1	3	2	2	-	-	2	-	2	2	3	3
3	Understand the working principle and performance of IC Engine.	1	2	2	2	2	1	-	-	1	1	2	2	1	2
	Average	1.3	0.7	1.3	2.7	2.3	1.7	0.3	-	1.7	0.3	2	2	2	2.7

			Se	mes	ter -	Ι									
	18TH	C14	- Si	mula	atio	n La	bora	tory	7						
						Prog	ram (Dutco	mes					Prog Spec Outc	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	To develop modelling and analysis skills on steady state heat conduction, convection and radiation problems	-	2	2	2	2	1	1	-	-	-	2	2	3	1
2	To develop modelling and analysis skills on unsteady state heat conduction, convection and radiation problems	2	2	3	2	2	1	2	1	-	-	2	3	3	1
3	To develop modelling and analysis on phase change processes heat transfer.	2	2	2	3	2	2	1	1	-	-	2	1	2	2
	Average	1.3	2	2.3	2.3	2	1.3	1.3	0.7	-	-	2	2	2.7	1.3

			Se	mes	ter -	- I									
	18MLC01	- Re	sear	ch I	/letl	10do	logy	y An	d IPI	R					
						Prog	ram (Outco	omes					Prog Spec Outc	ram cific omes
	Course Outcomes	1 2 3 4 5 6 7 8 9 10 11 12													2
1	To develop the skills required for defining research problems.	2	3	2	2	2	1	1	-	-	-	2	1	3	-
2	To develop skills required for effective literature studies.	2	3	3	2	2	1	1	1	-	-	2	1	3	-
3	To develop technical thesis writing skills.	-	-	-	-	-	2	1	-	3	3	2	1	3	1
4	To impact knowledge about IPR.	1	-	-	-	2	2	2	-	2	_	2	2	2	3
	Average	1.3	1.5	1.3	1	1.5	1.5	1.3	0.3	1.3	0.8	2	1.3	2.8	1

			Se	mes	ter -	II									
	18TH	C21	- Ac	lvan	ced	Hea	t Tra	ansfe	er						
					_	Prog	gram (Outco	mes		_		_	Prog Spec Outc	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	To study Heisler and Grober charts and to discuss about transient heat conduction	2	2	2	2	2	1	2	-	-	-	1	2	2	2
2	To compare and optimization of longitudinal fin of rectangular, triangular, and parabolic profiles	3	3	2	2	2	1	1	-	-	-	1	2	3	1
3	To understand boundary layers and to formulate pool and flow boiling correlations	2	3	2	2	2	1	-	-	_	-	1	3	1	1
4	To discuss thermal radiation, view factor, gas radiation, radiation effect on temperature measurement.	2	3	3	3	2	2	1	Ι	Ι	-	1	2	2	1
5	analyze thermal and gas radiation in heat transfer equipment.	_	3	3	3	2	2	1	-	-	2	1	2	2	-
	Average	1.8	2.8	2.4	2.4	2	1.4	1	-	-	0.4	1	2.2	2	1

			Ser	nest	er -	II									
	18THC22 - In	stru	men	tatio	on F	or T	herr	nal	Syst	ems	8			_	
						Prog	ram C	Outco	mes					Prog Spec Outco	ram cific omes
	Course Outcomes	1 2 3 4 5 6 7 8 9 10 11 12												1	2
1	Select the suitable measurement technique	2	1	2	2	3	1	1	-	-	-	2	1	2	1
2	Choose the suitable instruments for measurement	2	1	2	2	3	1	1	-	-	-	2	1	2	1
3	Apply the correct advanced techniques in measurement	2	1	3	2	3	1	1	-	-	-	2	2	2	1
4	Use the data acquisition system in the real time measurements	1	2	2	3	2	1	1	_	_	-	2	2	2	1
	Average	1.8	1.3	2.3	2.3	2.8	1	1	-	-	-	2	1.5	2	1

			Sei	nest	er -	II									
	18THC	23	- Th	erma	al La	abor	ator	y – I	Ι						
						Prog	ram	Outco	mes					Prog Spec Outc	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	To analyze the performance of several types of heat exchangers.	1 2 3 4 3 6 7 5 9 10 11 2 1 1 3 3 1 1 - - 2								2	3	2			
2	To analyze the performance of refrigeration system.	3	3	2	1	1	1	-	-	-	-	2	2	3	1
3	To analyze the performance of air conditioning systems.	2	2	1	2	2	1	_	-	-	-	2	2	3	1
	Average	2.3	2	1.3	2	2	1	0.3	-	-	_	2	2	3	1.3

			Ser	nest	er -	II									
	18TH	i C2 4	- M	ode	lling	Lab	orat	t ory							
						Prog	ram	Outco	omes					Prog Spec Outc	ram cific omes
Course Outcomes 1 2 3 4 5 6 7 8 9 10										11	12	1	2		
1	To impart the fundamental knowledge on using MATLAB.	1	3	2	3	2	1	1	-	-	-	2	2	3	-
2	To impart knowledge on how MATLAB tool is used by solving various heat transfer problems.	3	3	2	2	2	1	1	-	-	-	2	3	2	-
	Average	2	3	2	2.5	2	1	1	-	-	-	2	2.5	2.5	-

			Sen	nest	er -	III									
	1	L8T]	HC2	5 - N	Iini	Proj	ect								
						Prog	ram (Dutco	omes					Prog Spec Outc	ram cific omes
	Course Outcomes	1 2 3 4 5 6 7 8 9 10 11 12													2
1	Get an opportunity to work in actual industrial environment if they opt for internship.	-	1	2	3	-	1	3	-	1	1	-	-	-	1
2	Solve live problem using software or analytical or computational tools.	-	2	3	3	-	2	3	-	2	1	-	2	3	-
3	Write technical reports.	-	2	3	3	-	2	3	-	2	2	-	2	-	-
4	Develop skills to present and defend their work in front of technically qualified audience	-	2	3	3	-	2	3	-	3	2	-	-	-	-
	Average	-	1.8	2.8	3	-	1.8	3	-	2	1.5	-	1	0.8	0.3

			Ser	nest	er -	III									
	18TH	IC31	l - D	isse	rtati	ion l	Phas	e – I							
						Prog	ram (Outco	omes					Prog Spec Outc	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	Practice self-learning on various topics.	1	3	3	1	1	1	1	1	2	1	1	-	1	1
2	Learn to write technical reports.	2	-	1	2	-	1	-	1	2	1	-	1	2	-
3	Develop oral and written communication skills to present and defend their audience work in front of technically qualified.	-	-	-	-	-	2	-	1	-	1	-	-	2	-
4	Conduct tests on existing setups/equipment and draw logical conclusions from the results after analysing them.	_	-	-	-	-	2	2	-	1	_	1	-	-	1
5	Work in a research environment or in an industrial environment.	1	1	1	-	3	-	1	1	-	-	-	-	-	1
	Average	0.8	0.8	1	0.6	0.8	1.2	0.8	0.8	1	0.6	0.4	0.2	1	0.6

			Sei	mes	ter -	IV									
	18TH	IC41	D:	isse	rtati	ion I	Phas	e – I	Ί						
						Prog	ram (Outco	omes					Prog Spec Outc	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	Use different experimental techniques	1	3	3	1	1	1	1	1	2	1	1	-	-	_
2	Design and develop an experimental set up/ equipment/test rig.	-	1	1	-	-	-	3	1		1	-	-	-	1
3	Conduct tests on existing set ups/equipment and draw logical conclusions from the results after analyzing them.	2	-	1	2	-	1	-	1	2	1	1	-	-	1
4	Work in a research environment or in an industrial environment	-	-	-	-	-	2	-	1	-	1	-	-	-	1
5	Conversant with technical report writing.	-	-	-	-	-	2	2	-	1	-	1	-	-	1
6	Present and convince their topic of study to the engineering community.	1	1	1	-	-	1	3	1	1	-	1	-	-	2
	Average	0.7	0.8	1	0.5	0.2	1.2	1.5	0.8	1.2	0.7	0.7	-	-	1

			El	ectiv	ve -	1									
	18CDE11 - Advanc	ed N	/ Iath	ema	itica	1 M	etho	ds i1	n En	gin	eerir	ıg			
				_		Prog	ram (Outco	omes			_	_	Prog Spec Outc	gram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	Obtain the numerical solution of linear and non-linear equations and fitting curves by method of least squares.	3	2	1	1	2	1	1	-	-	-	1	1	2	-
2	Obtain the solution of wave equation using of Eigen function	3	2	1	1	2	1	-	-	-	-	1	1	1	1
3	Obtain the solutions of diffusion and wave equation involved in engineering problems using Laplace and Fourier transform techniques.	2	3	2	2	2	1	1	-	-	-	1	1	2	-
4	Gain the knowledge on statistical sampling and its applications, analysis of variance as one and two Way classification.	2	3	2	1	2	-	-	-	-	-	1	1	1	-
	Average	2.5	2.5	1.5	1.3	2	0.8	0.5	-	-	-	1	1	1.5	0.3

			Ele	ectiv	ve -	1									
	1871	HE1	1 - N	ucle	ear E	ngiı	neer	ing							
						Prog	ram (Dutco	omes					Prog Spec Outc	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	Understand the nuclear reactions and breeding.	2	1	1	2	2	1	1	-	_	-	1	2	-	1
2	Explain the diffusion and reactor kinetics.	3	1	1	1	1	1	1	-	-	-	1	2	1	-
3	Understand heat removal from reactor core, reactor safety and radiation protection.	3	2	1	1	1	1	1	_	_	-	2	2	2	-
	Average	2.7	1.3	1	1.3	1.3	1	1	-	-	-	1.3	2	1	0.3

			E1	ectiv	ve -	1									
	18THE12 - Er	nergy	y Co	nsei	vati	on a	and]	Mana	agei	nen	t				
						Prog	ram (Outco	mes					Prog Spec Outc	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	Describe the present energy scenario of India and standards and EC act.	1	2	1	1	2	1	2	-	2	3	1	1	3	3
2	Analyze and optimize the energy requirement and identify the suitable instrument for energy audit.	2	3	2	1	2	1	-	-	-	-	1	2	3	-
3	Analyze the cost vs. energy and identify suitable technique for cost analysis.	2	3	2	2	2	1	1	-	-	-	1	1	3	2
4	Examine the performance analysis of thermal equipment.	2	3	2	1	2	-	-	-	-	-	1	2	3	-
	Average	1.8	2.8	1.8	1.3	2	0.8	0.8	-	0.5	0.8	1	1.5	3	1.3

			E1	ectiv	ve -	1									
	18THE13 -	Alte	erna	tive	Fue	ls fo	r I.C). E1	ngin	es					
						Prog	ram	Outco	omes					Prog Spec Outc	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	Describe various alternative fuels for IC engine.	1 2 3 4 3 6 7 6 9 10 11 12 2 2 1 2 2 1 - - - 1 2										1	-		
2	Examine the characteristics of various liquid and gases fuels suitable for SI and CI engine.	2	2	1	2	2	1	-	-	-	-	1	2	2	-
3	Understand the concept of electric, hybrid and fuel cell vehicles.	2	2	1	1	2	1	-	-	-	-	1	2	1	-
	Average	2	2	1	1.7	2	1	-	-	-	-	1	2	1.3	-

			El	ectiv	ve -	1									
	18THE14 - Ele	ctro	nic	Eng	ine I	Man	agen	nent	Sys	stem	IS				
						Prog	ram (Outco	mes					Prog Spec Outco	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	Understand the different electronic components available in the present days engine management system.	2	1	1	1	2	2	3	_	_	-	1	1	2	1
2	Understand the role of electronic components in SI and CI Engine management system.	2	1	1	2	2	2	2	-	-	-	1	2	2	1
3	Understand the role of electronic components in vehicle management system.	2	1	1	2	2	1	2	-	-	-	1	2	1	1
	Average	2	1	1	1.7	2	1.7	2.3	-	-	-	1	1.7	1.7	1

			El	ectiv	7e -	1									
	18THE	15 -	Ana	lysis	s Of	Heat	t Tra	ansf	er						
						Prog	ram (Dutco	mes					Prog Spec Outc	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	Calculate and evaluate the impacts of initial and boundary conditions on the solutions of a particular Heat transfer problem	2	3	2	2	3	1	-	-	-	-	1	2	1	-
2	Evaluate the relative contributions of different modes of heat transfer.	2	3	2	2	3	1	-	-	_	-	1	2	2	-
3	Apply the heat transfer principles to design and to evaluate performance of thermal systems	2	2	3	3	2	1	_	-	-	-	1	2	1	_
	Average	2	2.7	2.3	2.3	2.7	1	-	-	-	-	1	2	1.3	-

			El	ectiv	ve -	2									
	18THE21	- Aiı	: co1	nditi	onir	ng sy	vste:	m de	esign	1					
						Prog	ram (Outco	mes					Prog Spec Outc	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	Understand the construction and design features Air-conditioning system.	2	2	1	1	2	1	1	-	-	-	1	2	2	-
2	Describe various types' loads and design the air conditioning system for a specific application.	2	2	1	2	2	1	1	-	-	-	1	2	3	_
3	Understand the components involved in air distribution system and able to design seasonal energy efficient system	3	2	1	2	3	1	-	-	-	-	1	2	2	-
	Average	2.3	2	1	1.7	2.3	1	0.7	-	-	-	1	2	2.3	-

			El	ecti	ve -	2									
	18TH	[E22	2 - A	dva	nced	IC	Engi	ines							
						Prog	ram	Outco	omes					Prog Spec Outc	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	Understand the combustion process, and the fuel injection techniques adopted in modern day IC engines	2	2	1	2	3	2	1	-	-	-	1	2	2	1
2	Adopt potential alternative fuel systems and exposed to recent developments in engine technology	2	2	3	3	2	-	_	-	-	-	1	2	2	2
	Average	2	2	2	2.5	2.5	1	0.5	-	-	-	1	2	2	1.5

			El	ectiv	ve -	2									
	18THE23 - Opt	imi	zatio	on T	ech	niqu	es ii	n En	gine	erin	ıg				
						Prog	ram (Outco	mes					Prog Spec Outc	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	Formulate the suitable optimization technique to the engineering applications	2	3	2	2	3	1	-	-	-	-	1	2	2	1
2	Find the suitable optimization method for a real life problems in engineering field	2	3	2	2	3	1	2	-	-	-	1	2	2	1
3	Apply the concept of nontraditional optimization	2	3	2	2	2	1	1	-	-	-	1	1	1	-
4	Choose a suitable method of linear programming for a particular application	2	3	3	2	2	1	-	-	-	-	1	2	1	-
	Average	2	3	2.3	2	2.5	1	0.8	-	-	-	1	1.8	1.5	0.5

			El	ecti	ve -	2									
	18THE24 - Bo	und	ary I	Laye	er Th	neor	y an	d Tu	rbul	lenc	e				
						Prog	ram (Outco	mes					Prog Spec Outc	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	Problems related to boundary layer theory and turbulence	2	2	1	2	3	2	1	-	-	-	1	2	1	_
2	Understand the statistical theory and kinematics of turbulence	2	2	3	3	2	-	-	-	-	-	1	2	2	-
3	Understand the turbulence models and turbulent flows	2	2	2	2	2	-	-	-	I	-	1	2	2	-
	Average	2	2	2	2.3	2.3	0.7	0.3	-	-	-	1	2	1.7	-

			El	ectiv	ve -	2									
	18THE2	25 -	Con	ıbus	tion	In I	lc Eı	ngin	es						
						Prog	ram (Dutco	mes					Prog Spec Outc	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	Understand the combustion processes and form combustion equation.	2	2	1	2	2	1	1	-	_	-	1	2	2	-
2	Understand the concepts of chemical kinetics and combustion in SI and CI engine.	2	2	2	2	3	1	-	-	-	-	1	3	1	-
3	Understand the concepts of combustion taking place in gas engine and analyse the factors affecting their performance.	2	3	3	2	2	-	-	-	-	-	1	2	1	1
	Average	2	2.3	2	2	2.3	0.7	0.3	-	-	-	1	2.3	1.3	0.3

			El	ectiv	ve - :	2									
	18CDE2	26 -	Nan	oma	teria	uls I	`ech	nolo	gу						
				_	_	Prog	ram (Outco	mes				_	Prog Spec Outc	ram cific omes
Course Outcomes 1 2 3 4 5 6 7 8 9 10 11 12													1	2	
1 Understand processing techniques for nanomaterials. 2 2 1 3 2 1 1 - 1 - 1										1	_				
2	Knowledge about various properties of nano-materials and to optimize the methods for specific Material application	1	1	2	1	-	1	1	-	2	1	1	-	-	_
3	Use various nano-fluids in the fields of engineering.	2	2	1	2	2	1	1	-	2	1	1	1	-	-
4	Use of Nano particles for the health, ecological and environmental hazards	1	1	1	1	-	-	-	2	2	2	2	1	-	1
	Average	1.5	1.5	1.3	1.8	1	0.8	0.8	0.5	1.8	1	1	0.8	0.3	0.3

			El	ectiv	ve -	3									
	18THE31	R	efrig	gera	tion	and	Cry	ogei	nics					_	
						Prog	ram (Dutco	omes					Prog Spec Outco	ram cific omes
	Course Outcomes	1 2 3 4 5 6 7 8 9 10 11 12											1	2	
1	Analyse the various cycles of refrigeration	2	3	2	3	3	1	-	-	-	-	1	2	3	-
2	Design the refrigeration system components	2	3	3	2	3	1	-	-	-	-	1	2	3	1
3	Choose the suitable method of gas liquefaction	2	3	2	2	2	1	-	-	-	-	1	2	2	-
4	Select the required storage method for the cryogenics liquids	2	2	1	2	2	1	-	-	-	_	1	2	2	_
	Average	2	2.8	2	2.3	2.5	1	-	-	-	-	1	2	2.5	0.3

			El	ectiv	ve - 3	3									
	18THE3	32 -	Desi	gn o	f He	at E	Exch	ange	ers						
						Prog	ram (Outco	mes					Prog Spec Outc	ram cific omes
	Course Outcomes	1 2 3 4 5 6 7 8 9 10 11 12											1	2	
1	Apply the knowledge of the in designing the heat exchangers	2	2	3	2	1	1	-	-	-	-	1	2	2	_
2	Choose the method of analysing the heat exchangers	2	3	2	3	2	1	1	-	-	-	1	2	2	-
3	Design the double pipe & other heat exchangers for a particular application	2	2	2	3	2	1	1	-	-	-	1	2	3	-
4	Apply the concepts of simulation & optimization of the designing	2	2	2	2	3	-	2	-	-	-	1	2	3	1
	Average	2	2.3	2.3	2.5	2	0.8	1	-	-	-	1	2	2.5	0.3

			Ele	ectiv	ve - 3	3									
	18THE33 - Cogene	ratio	on a	nd V	Vast	e He	at R	leco	very	y Sys	stem	IS			
						Prog	ram (Dutco	mes					Prog Spec Outco	ram cific omes
	Course Outcomes	1 2 3 4 5 6 7 8 9 10 11 12												1	2
1	Apply a suitable technology for waste heat management	1	-	2	-	2	2	1	-	2	-	1	2	1	1
2	Find a suitable heat recovery technology for a particular field	2	2	2	2	2	2	2	-	-	-	1	2	-	2
3	Select a proper heat recovery system to enhance the performance	2	3	2	2	2	1	-	-	-	-	1	2	-	2
3to enhance the performance2322214Do the economic analysis of cogeneration and heat recovery1122123											2	1	1	1	-
	Average	1.5	1.5	2	1.5	1.8	1.8	1.5	-	1	0.5	1	1.8	0.5	1.3

			Ele	ectiv	7e - 3	3									
	18THE34 - Design Of	Con	dens	ers	Eva j	pora	tors	and	l Co	olin	g To	wer	s		
						Prog	ram (Dutco	mes					Prog Spec Outco	ram cific omes
	Course Outcomes	1 2 3 4 5 6 7 8 9 10 11 12											1	2	
1	Design a suitable type of condensers for a particular application	2	1	2	3	2	1	1	-	-	-	1	1	2	1
2	Design the particular type of cooling tower for improving the plant performance	2	1	2	3	2	1	1	-	-	-	1	1	2	1
3	Select the suitable type of heat exchanger in the plants	2	1	2	2	2	1	-	-	-	-	1	2	1	-
4	Choose the required type of evaporator for any application	3	2	2	2	3	1	-	-	-	-	1	2	1	1
	Average	2.3	1.3	2	2.5	2.3	1	0.5	-	-	-	1	1.5	1.5	0.8

			E1	ectiv	ve -	3									
	18T	HE	85 - 8	Stea	m E	ngin	eeri	ng							
						Prog	ram (Dutco	mes					Prog Spec Outco	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	Explain the steam generation, combustion, and the boiler standards	3	2	1	3	2	1	2	-	-	-	1	2	-	-
2	Use techniques, skills, and modern engineering tools necessary for boiler performance assessment	3	2	1	2	3	1	2	-	-	-	1	2	2	1
3	Design a steam piping system, its components for a process and also design economical and effective insulation	2	1	2	2	2	-	1	-	1	2	1	2	1	1
4	Design and develop controls and instrumentation for effective monitoring of the process.	_	1	2	3	2	-	1	-	1	2	1	1	2	-
	Average	2	1.5	1.5	2.5	2.3	0.5	1.5	-	0.5	1	1	1.8	1.3	0.5

			El	ectiv	7e - 4	4									
	18THE41	- Co	mpu	ıtati	onal	Flu	id D	yna	mics	5				_	
						Prog	ram C	Outco	mes					Prog Spec Outc	ram cific omes
	Course Outcomes	1 2 3 4 5 6 7 8 9 10 11 12												1	2
1	Solve the problems in conduction and convection heat transfer	2	3	2	2	2	1	_	-	-	-	1	2	1	-
2	Model and grids generation for heat transfer	2	2	2	2	3	1	-	-	-	-	1	1	2	2
3	Apply the suitable CFD technique to the real life problems	2	3	3	2	2	-	-	-	-	-	1	1	3	-
4	Solve the problems in incompressible fluid flow field	3	3	2	1	2	1	-	-	-	-	1	2	2	1
	Average	2.3	2.8	2.3	1.8	2.3	0.8	-	-	-	-	1	1.5	2	0.8

			Ele	ectiv	e - I	V									
	18THE42 - S	Simu	ılati	on o	f IC	Eng	ines	Pro	cess	ses					
						Prog	ram C	Outco	mes					Prog Spec Outc	ram cific omes
	Course Outcomes	1 2 3 4 5 6 7 8 9 10 11 12												1	2
1	Apply the knowledge to model an IC engine	2	2	3	2	2	2	-	-	-	-	1	2	2	-
2	Analyse the components of IC engine	2	3	3	2	3	2	-	-	-	-	1	1	2	-
3	Frame the suitable mathematical models for an SI & CI engines	3	3	2	1	2	-	-	-	-	-	1	2	2	-
4	Apply the concepts of simulation to the IC engine components	2	3	3	2	3	2	-	-	-	-	1	1	2	-
	Average	2.3	2.8	2.8	1.8	2.5	1.5	-	-	-	-	1	1.5	2	-

			E1	ectiv	7e -]	(V									
	18TH	E43	- F1	ıels	and	Con	nbus	tion	I						
						Prog	ram (Dutco	mes					Prog Spec Outc	ram cific omes
	Course Outcomes	1 2 3 4 5 6 7 8 9 10 11 12												1	2
1	Apply the knowledge of combustion kinetics for characteristics of fuel.	2	2	1	2	2	1	_	-	-	_	1	3	1	1
2	Calculate the correct air fuel ratio for complete combustion	2	3	1	3	3	-	-	-	-	-	1	2	2	-
3	Select the suitable combustion equipment for particular fuel burning	2	1	1	3	2	1	-	-	-	-	1	2	2	-
4	Design a suitable combustion equipment for burning combination of fuels	2	2	2	3	2	1	1	-	-	-	1	1	3	-
	Average	2	2	1.3	2.8	2.3	0.8	0.3	-	-	-	1	2	2	0.3

			Ele	ectiv	7e -]	IV									
	18THE44 - I	Envi	ron	men	t an	d Po	lluti	on (Cont	rol					
						Prog	ram (Dutco	omes					Prog Spec Outc	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	Identify the air pollutant control devices	2	2	1	2	3	-	-	-	-	-	1	1	1	2
2	Differentiate the treatment techniques used for sewage and industrial wastewater Treatment methods.	2	2	1	1	2	2	3	-	2	1	1	1	1	2
3	Understand the fundamentals of solid waste management, practices adopted in his town/village and its importance in keeping the health of the city.	2	2	3	1	2	2	3	-	2	1	1	2	3	-
	Average	2	2	1.7	1.3	2.3	1.3	2	-	1.3	0.7	1	1.3	1.7	1.3

			Ele	ectiv	7e -]	[V									
	18THE45 -	Mo	dern	Pov	ver	Plan	t En	gine	erin	g					
						Prog	ram (Outco	mes					Prog Spec Outc	ram cific omes
	Course Outcomes	1 2 3 4 5 6 7 8 9 10 11 12 n of												1	2
1	Identify the possible mitigation of anthropogenic emissions by optimizing the power plant cycles or Utilities	2	2	3	-	1	2	2	-	-	-	1	1	1	1
2	Understand the operation of various power plants in India	2	2	1	1	2	2	1	-	2	1	1	1	1	-
3	Choose a suitable combined cycle power plant for better performance	2	3	1	2	2	1	-	-	-	-	1	2	1	-
4	Apply and follow the government and legislation policies imposed on pollution control	2	1	3	1	2	2	2	-	2	3	1	-	-	2
	Average	2	2	2	1	1.8	1.8	1.3	-	1	1	1	1	0.8	0.8

			El	ectiv	7e - 1	V									
	18THE51 -	Des	ign	of S	olar	and	Win	d Sy	yste	m					
						Prog	ram C	Outco	mes					Prog Spec Outc	ram cific omes
	Course Outcomes	1 2 3 4 5 6 7 8 9 10 11 12												1	2
1	Suggest and design solar thermal based applications	2	2	2	3	2	1	1	-	-	-	1	2	3	-
2	Designing of solar photovoltaic based power systems for both domestic and industrial applications	2	3	2	2	2	1	2	-	-	-	1	2	3	1
3	Know the energy conversion techniques in wind energy	3	1	2	3	2	-	-	-	-	-	1	2	2	-
4	Learn about wind turbine components and their constructions	2	2	3	3	2	1	1	-	-	-	1	2	2	-
	Average	2.3	2	2.3	2.8	2	0.8	1	-	-	-	1	2	2.5	0.3

			Ele	ectiv	7e - `	V									
	18THE52 - De	esigr	and	l An	alys	is of	f Tui	rbon	nach	ines	5				
						Prog	ram (Dutco	mes					Prog Spec Outc	ram cific omes
Course Outcomes 1 2 3 4 5 6 7 8 9 10 11 12												1	2		
1	Understand the design principles of the Turbomachines	1 2 3 4 5 6 7 8 9 10 11 12 1 2 2 3 2 2 1 - - - 1 2									3	-			
2	Analyze the Turbomachines to improve and optimize its performance	2	3	1	2	3	1	1	-	-	-	1	2	3	_
3	Able to study and analysis the various engine cycles	3	2	2	2	2	-	1	-	-	_	1	2	2	_
	Average	2.3	2.3	2	2	2.3	0.7	0.7	-	_	-	1	2	2.7	-

			E1	ecti	ve -	V									
	18THE53 - En	ergy	y Sys	stem	ıs M	ode	lling	and	An	alysi	İs				
						Prog	gram (Outco	omes					Prog Spec Outc	ram cific omes
Course Outcomes 1 2 3 4 5 6 7 8 9 10 11 12													1	2	
1	Simulate and model of typical energy system	2	3	2	3	2	1	1	-	-	-	2	1	2	-
2	Analysis the effects of constraints on the performance of energy systems	2	2	2	2	2	-	1	-	-	-	1	1	3	-
3	Have a potential to do design HEN net work and perform energy-economic analysis for a typical applications	2	1	1	2	2	1	2	-	2	2	1	1	3	1
	Average	2	2	1.7	2.3	2	0.7	1.3	-	0.7	0.7	1.3	1	2.7	0.3

			E1	ectiv	ve -	V									
	18THE54 - I	nter	nal	Con	ıbus	tion	En	gine	Des	ign					
						Prog	ram	Outco	omes					Prog Spec Outc	ram cific omes
	Course Outcomes 1 2 3 4 5 6 7 8 9 10 11 12														2
1	Demonstrate the basics of engine design	2	2	2	2	3	1	1	2	-	_	1	2	1	-
2	Design major engine components	2	2	1	1	2	1	1	-	1	2	-	2	1	-
3	Design two stroke engines and study the applications of computers in engine design	3	2	2	3	3	1	-	-	-	-	1	2	2	-
	Average	2.3	2	1.7	2	2.7	1	0.7	0.7	0.3	0.7	0.7	2	1.3	-

			Ele	ectiv	7e - `	V									
	18THE55 -	Adva	ance	d Fi	nite	Ele	men	t Ar	nalys	sis					
						Prog	ram C	Jutco	mes					Prog Spec Outc	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	Understand of FE formulation for linear problems in solid mechanics	2	2	2	2	3	1	1	-	-	-	1	1	2	1
2	Understand behaviour of elastic- plastic materials and viscos- plasticity, Use of Newton-raphson method for solving nonlinear equations of equilibrium	3	3	2	2	2	-	-	-	-	-	1	1	2	-
3	Understand flow rules and strain hardening, loading and unloading conditions, Drucker's stability postulates, J2 flow of theory of plasticity	3	2	2	3	2	1	2	-	-	-	1	1	2	1
	Average	2.7	2.3	2	2.3	2.3	0.7	1	-	-	-	1	1	2	0.7

			Ele	ectiv	7e - `	VI									
	18T	'HE6	51 -	Busi	nes	s An	alyt	ics							
						Prog	ram (Outco	omes					Prog Spec Outc	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	Demonstrate knowledge of data analytics.	2	3	-	1	1	1	2	-	-	-	1	1	3	-
2	Demonstrate how to think critically in making decisions based on data and deep analytics.	1	3	1	1	1	1	-	-	-	-	1	1	2	-
3	Demonstrate to use technical skills in predictive and prescriptive modeling to support business Decision-making.	1	1	1	2	3	-	1	-	-	-	1	2	2	1
4	Translate data into clear, actionable insights.	1	1	1	-	1	1	-	3	Ι	2	1	1	2	1
	Average	1.3	2	0.8	1	1.5	0.8	0.8	0.8	-	0.5	1	1.3	2.3	0.5

			Ele	ectiv	7e - 1	VI										
	18	THE	62 -	Ind	ustr	ial S	Safet	y								
						Prog	ram (Outco	omes					Prog Spec Outc	ram cific omes	
	Course Outcomes	1	1 2 3 4 5 6 7 8 9 10 11 12													
1	Convey knowledge on safe work practices in offices, industry and construction.	3	2	1	1	1	1	2	1	-	-	1	2	-	2	
2	To understand the maintenance concept.	1	1	1	1	1	1	-	-	-	-	1	-	-	1	
3	Select suitable techniques to trace faults in industry.	1	1	1	1	3	-	1	-	-	-	1	-	-	2	
4	Select and apply the proper maintenance techniques to industrial equipment.	1	1	1	-	3	1	-	2	-	2	1	-	-	2	
	Average	1.5	1.3	1	0.8	2	0.8	0.8	0.8	-	0.5	1	0.5	-	1.8	

			Ele	ectiv	ve - 1	VI									
	18TI	HE63	3 - O	pera	atior	ıs R	esea	rch							
						Prog	ram (Dutco	mes					Prog Spec Outc	ram cific omes
	Course Outcomes	1	1 2 3 4 5 6 7 8 9 10 11 12												
1	Apply the dynamic programming to solve problems of discrete and continuous variables	3	1	1	-	-	1	2	-	2	-	1	2	2	-
2	Apply the concept of non-linear programming	1	1	1	1	1	-	-	-	2	1	1	2	2	-
3	Carry out sensitivity analysis	2	3	1	1	1	1	-	-	-	-	1	1	3	-
4	Model the real world problem	1	2	1	1	1	-	1	-	-	1	1	-	-	2
	Average	1.8	1.8	1	0.8	0.8	0.5	0.8	-	1	0.5	1	1.3	1.8	0.5

			Ele	ectiv	ve - 1	VI									
	18THE64 - Cos	t Ma	nag	eme	nt o	f En	gine	erin	g Pr	ojec	ts				
						Prog	ram (Outco	mes					Prog Spec Outc	ram cific omes
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	Explain the concepts of cost management and decision making	2	2	1	1	-	_	-	1	1	1	1	-	-	1
2	Explain the concept of projects, its process, objectives and functions of project management	1	1	1	1	-	-	-	1	1	-	1	-	-	1
3	Analyze costing techniques and cost-volume-profit relationships	1	3	2	1	1	-	-	1	1	1	1	-	-	2
4	Apply the pricing strategies and budgetary controls	1	1	1	2	1	1	1	-	-	1	1	-	-	1
5	Select the appropriate quantitative techniques for cost management	1	1	1	1	3	-	-	1	1	-	1	-	-	1
	Average	1.2	1.6	1.2	1.2	1	0.2	0.2	0.8	0.8	0.6	1	-	-	1.2

			E1e	ectiv	7e - 1	VI									
	18	THE	65 ·	Wa	ste 1	to E	nerg	gу							
						Prog	ram	Outco	omes					Prog Spec Outc	ram cific omes
Course Outcomes 1 2 3 4 5 6 7 8 9 10 11 12 1													1	2	
1	Understand the concepts of energy conversion technique from waste.	1	1	1	1	-	_	1	-	-	2	1	-	-	1
2	Understand biogas generation techniques such as pyrolysis, gasification and combustion.	1	1	1	-	-	-	2	1	-	3	1	-	-	1
3	Identify the suitable method for available waste.	1	1	1	-	-	-	1	-	-	3	1	-	-	1
	Average	1	1	1	0.3	-	-	1.3	0.3	-	2.7	1	-	-	1

			Aud	lit C	ours	ses										
	18AC-1 - E	ngli	sh fo	or R	esea	rch	Pap	er W	ritir	ıg						
					_	Prog	ram	Outco	omes				_	Prog Spec Outc	ram cific omes	
	Course Outcomes	1	1 2 3 4 5 6 7 8 9 10 11 12													
1	Practice the unique qualities of a professional writing style	1	1	1	1	-	-	1	_	-	2	1	1	2	-	
2	Recognize, explain, and use the verbal strategies and the formal elements	1	1	1	-	-	-	2	1	-	3	1	-	-	-	
3	Collect, analyze, document, and report research clearly, concisely, logically, and ethically	1	1	1	-	-	-	1	-	-	3	1	-	-	1	
4	Participate actively in writing activities that model effective scientific and technical papers.	1	2	1	1	1	-	1	-	-	1	1	-	-	1	
	Average	1	1.3	1	0.5	0.3	-	1.3	0.3	-	2.3	1	0.3	0.5	0.5	

			Aud	lit C	ours	ses									
	18A	C-2	- Dis	sast	er M	anag	gem	ent							
						Prog	ram	Outco	omes					Prog Spec Outc	ram cific omes
	Course Outcomes	1	1 2 3 4 5 6 7 8 9 10 11 12												
1	Develop an understanding of the key concepts and the significance of disaster management	1	1	1	1	-	-	1	-	-	2	1	-	-	2
2	Understand the occurrences, reasons and mechanism for various types of disaster.	1	1	1	-	-	-	2	1	-	1	1	2	-	1
3	Have a basic understanding of the Disaster Preparedness and Management	1	1	1	-	-	-	1	-	-	1	1	-	-	-
4	Develop a basic under the understanding of Risk assessment, Prevention, Mitigation, Response and Recovery.	1	1	1	1	1	-	1	-	-	1	1	-	-	-
	Average	1	1	1	0.5	0.3	_	1.3	0.3	-	1.3	1	0.5	-	0.8