Government College of Engineering, Salem - 11 Department of Civil Engineering M.E. - Computer Aided Design COs - POs and PSO Mapping Course Articulation Matrix – 18 Regulation

				Sen	ieste	e r – 1	[
	18CDC	211 -	Cor	icept	ts of	Eng	inee	ring	Des	ign						
						Prog	gram (Outco	mes					S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Apply design principles for Quality Products to create economically viable products.	2	2	1	3	1	-	-	-	2	-	1	-	3	3	1
CO2	Identify the materials and integrate the manufacturing processes with Engineering Design	2	3	2	2	3	-	-	-	-	-	1	-	3	2	3
CO3	Synthesize the principles of design for machinability, accessibility and assembly with greater concern towards environmental issues.	2	1	1	2	2	1	-	-	Ι	-	1	-	-	1	-
CO4	To compute reliability engineering parameters and estimates for applications in mechanical devices and manufacturing environments.	1	1	1	1	2	-	-	-	1	-	1	-	-	-	1
	Average	1.8	1.8	1.3	2	2	1	-	-	1.5	-	1	-	3	2	1.2

	18CDC12 - (⁷ om			ster		011;		nd D	osia	·					
	1860612 - (-0111	putt		ucu			Outco		<i>icsig</i>	,11			S	rogran pecifi itcom	ic
	Course Outcomes 1 2 3 4 5 6 7 8 9 10 11 12															3
CO1	Apply mathematical skills in the design and generation of modelling in software.	2	2	2	1	3	-	-	-	2	-	1	-	1	1	2
CO2	Apply basic concepts to develop construction techniques and solid modelling concepts	2	2	2	2	3	_	-	-	-	_	1	-	1	1	3
CO3	Apply the modeling concept, to design the product in manufacturing	2	1	1	2	3	-	-	-	_	_	1	_	2	2	1
CO4	Use computer and CAD software for design and modelling.	1	1	1	_	3	-	-	-	1	-	1	-	3	2	1
	Average		1.5	1.5	1.7	3	-	-	_	1.5	-	1	-	1.8	1.5	1.8

				eme			1 5		-							
	18CDC13	3 - C		Mod	ellin		gram (-	ab				S	rogra pecifi itcom	ic
	Course Outcomes	1	2	12	1	2	3									
CO1	Use SOLID EDGE and CATIA software toolbars and menus, draw and modify tools	-	1	2	3	-	1	3	-	1	1	-	-	1	2	3
CO2	Model the 3D mechanical components with dimensioning	-	2	3	3	-	2	3	-	2	1	-	-	2	1	3
CO3	Model the automobile parts	-	2	3	3	-	2	3	-	2	2	-	-	3	2	-
CO4	Assembling and detailing of a given mechanical component using software assistance.	-	2	3	3	-	2	3	-	3	2	-	-	1	3	-
	Average	-	1.8	2.8	3	-	1.8	3	-	2	1.5	-	-	1.8	2	3

					ster											
	18CDC1	4 - 1	Finit	e El	eme		ram (I				S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Derive equations in finite element methods for 1D, 2D and 3D problems	1	2	1	3	-	1	1	-	1	-	-	-	1	2	3
CO2	Formulate and solve basic problems in heat transfer, solid mechanics and fluid mechanics		1	2	1	-	1	1	-	2	1	-	-	3	_	-
CO3	Demonstrate a knowledge and understanding of the fundamentals of the finite element method as an approximation method for analysis of a variety of engineering problems.	3	2	1	2	3	1	1	-	2	1	-	-	2	2	2
CO4	Analyse a real component using a finite element package.	3	1	1	1	3	-	-	-	2	2	-	-	1	-	3
	finite element package. Average		1.5	1.3	1.8	3	1	1	-	1.7	1.3	-	-	1.8	2	2.7

			S	eme	ster	– I										
	18MLC0	1 - F	Rese	arch	Me	thod	olog	gy ai	nd II	P R						
						Prog	ram	Outco	omes					S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Understand research problem formulation.	1	-	-	-	-	-	-	-	-	-	1	-	1	2	-
CO2	Analyse research-related information	-	3	-	-	-	1	-	-	-	-	1	-	2	1	-
CO3	Follow research ethics	-	-	2	-	1	1	-	-	-	-	1	-	-	-	-
CO4	Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.	-	-	-	2	1	-	-	-	-	2	1	-	-	-	2
CO5	Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to the creation of new and better products, and in turn brings about, economic growth and social benefits.	_	-	-	_	_	_	-	-	_	-	1	-	2	_	3
	Average	1	3	2	2	1	1	-	-	-	2	1	-	1.7	1.5	2.5

					ster											
	18CDC21	- Fi	nite	Eler	nent			ls in Outco		sign				S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Understand the concept of finite element method for soling design problems.	3	1	3	1	-	-	-	1	1	-	-	-	1	2	-
CO2	Formulate and solve manually problems in 10D structural systems involving bars, trusses, beams and frames.	3	1	3	3	3	-	-	1	1	-	-	-	-	-	3
CO3	Develop 2-D FE formulations involving triangular, quadrilateral elements and higher order elements	3	1	3	3	2	-	-	1	1	-	-	-	-	-	-
CO4			2	3	3	2	-	2	2	1	-	-	-	1	2	-
	Average	3	1.3	3	2.5	2.3	-	2	1.3	1	-	-	-	1	2	3

	18CDC22 -	Мес		emes ical			ns a	nd A	lcou	stic	s					
						Prog	gram (Outco	omes					S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Define the basic terms of vibrating system	3	1	1	1	1	-	-	-	-	-	1	_	-	-	1
CO2	Illustrate and identify the basic components of vibrating system	1	3	1	1	2	2	-	-	-	-	1	-	-	-	-
CO3	Formulate mathematical models of problems in vibrations using Newton's second law or energy principles	2	1	2	1	-	1	1	-	-	-	1	-	1	2	-
CO4	Determine a complete solution to mechanical vibration problems using Mathematical or numerical techniques	1	3	2	1	1	-	-	-	-	-	1	-	-	-	_
	Average	1.8	2	1.5	1	1.3	1.5	1	-	-	-	1	-	1	2	1

	18CDC2	3 - F			ster eme		naly	sis l	Lab -	-II						
						Prog	gram	Outco	omes					S	rogra: pecifi ıtcom	ic
	Course Outcomes 1 2 3 4 5 6 7 8 9 10 11 12															3
CO1														2	1	-
CO2	Apply the FEM technology for Thermal & Fluid Flow Analysis	3	1	2	1	-	1	1	-	2	1	-	-	2	2	3
CO3	Make familiar with the use of CAE Software.	3	2	1	2	3	1	1	_	2	1	_	-	1	-	2
CO4	Make familiar of the use of Mass, moment, energy conservation of fluid flow.	3	1	1	1	3	-	-	-	2	2	-	-	3	1	1
	Average	2.5	1.5	1.3	1.8	3	1	1	-	1.8	1.3	-	-	2	1.3	2

	18C	DC2		eme: CAM			ootic	s La	ıb							
							gram (S	rograi pecifi itcom	ic
	Course Outcomes															3
CO1	Apply the basic concepts in NC technology for turning and milling applications.	-	1	2	3	-	1	3	-	1	1	-	-	3	1	1
CO2	Make familiar with the use of CAE and CAM Software.	-	2	3	3	-	2	3	-	2	1	-	-	2	2	1
CO3	Practice in part programming and operating a machining center.	-	2	3	3	-	2	3	-	2	2	-	-	3	1	-
CO4	Program and control robot path for industrial applications	-	2	3	3	-	2	3	-	3	2	-	-	3	1	2
	Average		1.8	2.8	3	-	1.8	3	-	2	1.5	-	-	2.8	1.3	1

		10		eme												
		10		25 -	WIII		oject gram (omes					S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Students will get an opportunity to work in the actual industrial environment if they opt for an internship	-	1	2	3	-	1	3	-	1	1	-	-	1	1	1
CO2	In the case of a mini project, they will solve a live problem using Software/analytical/computational tools.	-	2	3	3	-	2	3	-	2	1	-	_	1	1	2
CO3	Students will learn to write technical reports	-	2	3	3	-	2	3	-	2	2	-	-	1	-	-
CO4	Students will develop skills to present and defend their work in front of a technically qualified audience	-	2	3	3	-	2	3	-	3	2	-	-	1	-	-
	Average	-	1.8	2.8	3	-	1.8	3	-	2	1.5	-	-	1	1	1.5

			Se	mes	ster ·	- III										
	18C	DC	31 - 1	Diss	erta	tion	Pha	se –	Ι							
						Prog	ram (Outco	omes					S	rograi pecifi itcom	c
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Students will be able to use different experimental techniques.	1	3	3	1	1	1	1	1	2	1	1	-	1	-	-
CO2	Students will be able to use different software/ computational/analytical tools	-	1	1	-	-	-	3	1	-	1	-	-	1	-	-
CO3	Students will be able to design and develop an experimental set up/ equipment/test rig.	2	-	1	2	-	1	-	1	2	1	1	-	1	2	1
CO4	Students will be able to conduct tests on existing set ups/equipment's and draw logical conclusions from the results after analyzing them.	-	-	-	-	-	2	-	1	-	1	-	-	_	-	1
CO5	Students will be able to either work in a research environment or in an industrial environment.	-	-	-	-	-	2	2	-	1	-	1	-	-	-	1
CO6	Students will be conversant with technical report writing.	1	1	1	-	-	1	3	1	1	-	1	-	2	1	-
CO7	Students will be able to present and convince their topic of study to the engineering community	1	1	1	-	-	-	1	1	-	-	-	-	-	1	-
	Average	1.2	1.5	1.7	1.5	1	1.4	2	1	1.5	1	1	-	1.6	1.3	1

			Se	mes	ter ·	- IV										
	18C	DC4	1 - I	Disse	rtat	ion	Pha	se –	II							
						Prog	ram (Outco	omes					S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Students will learn to survey the relevant literature such as books, national/international refereed journals and contact resource persons for the selected topic of research.	1	3	3	1	1	1	1	1	2	1	1	-	1	1	1
CO2	Students will be able to use different experimental techniques.	-	1	1	-	-	-	3	1	-	1	1	-	1	-	2
CO3	Students will be able to use different software/ computational/analytical tools.	2	-	1	2	_	1	_	1	2	1	-	-	1	_	-
CO4	Students will be able to design and develop an experimental set up/ equipment/test rig.	-	-	-	-	-	2	-	1	-	1	-	-	1	-	-
CO5	Students will be able to conduct tests on existing set ups/equipment and draw logical conclusions from the results after analyzing them.	-	-	-	-	_	2	2	-	1	-	1		-	1	-
CO6	Students will be able to either work in a research environment or in an industrial Environment	1	1	1	-	3	-	1	1	-	-	-	-	3	1	1
	Average	1.3	1.7	1.5	1.5	2	1.5	1.7	1	1.7	1	1	-	1.4	1	1.3

				El	ectiv	ve										
	18CDE11 - Adva	nce	d Ma	athe	mati	ical	Met	hods	s in 1	Engi	nee	ring				
						Prog	ram (Outco	mes					Sp	ogram ecific come	;
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Obtain the solutions of homogeneous and non-homogeneous differential equations.	2	2	2	1	3	-	-	-	2	-	1	-	-	1	-
CO2	Obtain the solution of wave equation by method of Eigen function	2	2	2	2	3	-	-	I	-	-	1	-	-	-	-
CO3	Obtain the solutions of diffusion and wave equation involved in engineering problems by using Laplace and Fourier transform techniques	2	1	1	2	3	-	-	-	-	-	1	-	1	-	_
CO4	Gain the knowledge on statistical sampling and its applications, analysis of variance as one and two way classification	1	1	1	-	3	-	-	-	1	-	1	-	-	-	1
	Average	1.8	1.5	1.5	1.3	3	-	-	-	1.5	-	1	-	1	1	1

				Ele	ctiv	e										
	18CDE1	2 - A	ldva	nceo	1 Co	-				ls					rogra	
						Prog	ram (Outco	omes						pecifi Itcom	
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Choose and select the suitable composite material and their reinforcements	1	2	1	3	1	-	-	-	2	-	1	-	-	-	_
CO2	Select constituent materials glass, carbon, aramid, ceramic fibers and resins	1	1	1	2	2	1	-	-	-	-	1	-	-	-	1
CO3	Understand & Apply engineering mechanics, analysis and design, macro and micro mechanics of composites	2	2	1	1	2	2	3	-	-	2	1	L	1	-	-
CO4	Highlight the appropriate use of composite structures in the industry.	1	1	1	1	2	-	I	-	1	-	1	-	-	1	-
	Average	1.3	1.5	1	1.8	1.8	1.5	1.5	-	1.5	2	1	-	1	1	1

	18CDE1	3 - F	Prod		ctiv Lifec		Ma	nage	emei	nt						
						-	ram (S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	1	2	3										
CO1	Understand history, concepts and terminology of PLM.	1	2	1	3	1	_	-	-	2	I	1	-	ļ	-	-
CO2	Understand and analyse the product life cycle environment.	1	1	1	2	2	1	-	-	-	-	1	-	-	-	1
CO3	Understand PLM/PDM implementation approaches	2	2	1	1	2	2	3	-	-	2	1	-	1	-	-
CO4	Integrate PLM/PDM with other applications	1	1	1	1	2	-	-	-	1	-	1	-	-	1	-
	Average	1.3	1.5	1	1.8	1.8	1.5	3	-	1.5	5	1	-	1	1	1

				Ele	ctiv	e										
	18CDE14 -	Des	ign :	for I	Ianu	ıfact	turir	ng, A	ssei	nbly	7					
						Prog	ram (Outco	omes					S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Select various machining and metal joining processes for economical production and select the materials	3	1	1	1	1	-	1	1	-	-	1	-	-	-	-
CO2	Understand constraints of manufacturing processes that limit design possibilities with respect to cycle time	1	2	1	1	1	3	1	1	-	-	1	-	1	1	3
CO3	Integrate the knowledge of compliance analysis and interference analysis for assembly	2	2	-	3	-	-	1	1	-	-	2	-	3	2	1
CO4	Prepare project or report to illustrate applied DFM principles in manufacturing and service industries	1	1	1	2	-	1	-	1	-	-	2	-	2	-	2
	Average	1.8	1.5	1	1.8	1	2	1	1	-	-	2	-	2	1.5	2

	100001				ctiv		•	. 76		1						
	18CDE15	- A	dvar	iced	Eng	-	ring	-		als				S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Identify fundamental issues and establish directions for selection of materials	3	1	1	1	1	1	-	-	-	-	1		_	-	-
CO2	Prepare high strength materials.	1	2	_	1	1	1	-	_	-	-	1	-	-	-	-
CO3	Suggest materials for low and high temperature applications.	1	2	3	1	1	-	-	-	-	-	1	_	-	-	1
CO4	Integrate knowledge of different types of advanced engineering materials	1	1	2	1	1	1	-	-	2	-	1	-	_	-	-
CO5	Analyse problem and find appropriate solution for use of materials.	1	-	1	1	-	-	-	-	-	1	1	-	1	2	-
	Average	1.4	1.5	1.7	1	1	1	-	-	2	1	1	-	1	2	1

				Ele	ctiv	е										
	18CDE	l6 -	Exp	erim	enta	al St	ress	Ana	lysi	s						
						Prog	ram (Outco	mes					S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	To explain the concept of elasticity and the difference between stress and strain	2	3	2	2	1	2	2	1	2	1	1	-	-	-	-
CO2	Explain the term as plane stress and plane strain	2	2	2	2	1	2	2	1	3	1	1	-	1	-	1
CO3	Conduct the transformation of plane stress or plane strain components using Mohr's circle, the method of Eigen values and eigenvectors, the method of quadratic form of ellipsoids, and the method of stress or strain trajectories		2	3	1	2	2	2	_	1	1	1	-	-	2	_
CO4	Apply basic concepts of elastic stability and buckling of elastic	1	1	1	2	1	3	1	-	1	1	1	-	1	-	-
	Average	1.5	2	2	1.8	1.3	2.3	1.8	1	1.8	1	1	-	1	2	1

				Ele	ctiv	е										
	18CDE21-A	Adva	nce	d Ki	nem	atic	s of	Mec	hani	isms	;					
						Prog	ram (Outco	omes					S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Develop an analytical equation describing the relative velocity and acceleration of links.	2	2	1	3	1	-	-	-	2	-	1	-	2	2	3
CO2	Solve constrained equation to design the linkages for a specified application.	2	3	2	2	3	-	1	-	-	-	1	-	3	1	2
CO3	Select configure and synthesize mechanical components into complete systems.	2	1	1	2	2	1	-	-	-	-	1	-	-	-	-
CO4	Select the topological arrangements of a robotic arm for specific applications.	1	1	1	1	2	-	-	-	1	-	1	-	1	-	-
	Average	1.8	1.8	1.3	2	2	1	1	-	1.5	-	1	-	2	1.5	1.5

				Ele	ctiv	e										
	18C	DE2	2 - 1	Adva	nce	d To	ol D	esig	n							
						Prog	ram (Outco	omes					S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Identify the properties of tool material, tool nomenclature and to classify the cutting tools.	1	2	1	2	-	-	-	-	-	-	1	-	-	_	3
CO2	Apply design principles for tool design and to create economically viable products	-	1	3	1	-	-	-	-	-	-	1	-	3	1	2
CO3	Can find the applications of all the areas in the day to day life.	1	1	1	3	-	I	-	1	-	-	1	-	-	-	-
CO4	Synthesize the principles of Tool design and Design of Jigs and Fixtures as per modern industrial requirement	1	1	1	1	1	-	-	-	-	-	1	-	1	2	-
	Average	1	1.3	1.5	1.8	1	-	-	1	-	-	1	-	2	1.5	2.5

	100570				ctiv	-										
	18CDE23	3 - A	dva	nced	l Str			f Ma Outco		uls				S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Relate the mechanical properties of materials to their structure.	1	1	1	2	-	-	-	-	-	-	1	-	-	-	-
CO2	Select materials for structural applications which can withstand the bending.	1	1	1	1	_	_	_	-	_	-	1	_	-	_	1
CO3	Solve realistic and/or fundamental problems relating to the mechanical behavior of materials for individual solutions and tests.	1	1	3	1	-	-	-	1	-	-	1		-	-	-
CO4	Design the problems related to designing the pressure vessels and piping systems.	1	1	1	1	1	-	-	-	-	-	1	-	1	2	-
	Average	1	1	1.5	1.3	1	-	-	1	-	-	1	-	1	2	1

				Ele	ctiv	e										
	18C	DE2	4 - 1	Mecl	hani			Outco						S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Use any one of the four parameters for finding out damage tolerance: stress intensity factor, energy release rate, J integral, Crack tip opening displacement.	2	2	2	2	2	1	-	-	-	-	-	-	-	_	-
CO2	Manage singularity at crack tip using complex variable.	2	2	2	2	2	1	-	-	_	-	_	-	-	1	_
CO3	Learn modern fatigue and to calculate the fatigue life of a component with or without crack in it.	2	2	2	3	3	1	-	-	-	-	-	-	1	-	-
CO4	Learn modern sophisticated experimental techniques to determine fracture toughness and stress intensity factor.	2	2	2	3	3	1	-	-	-	-	-	-	-	-	1
	Average	2	2	2	2.5	2.5	1	-	-	-	-	-	-	1	1	1

					ctiv											
	18CDE2	5 - 1	Rapi	d Pro	otot		<u> </u>	nd To Outco		ıg				S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Identify the intended modelling process for a particular product.	1	1	1	-	1	-	-	-	-	-	1	-	1	2	3
CO2	Improves the scope of application in the field of manufacturing products	1	1	1	-	-	-	-	-	-	Ι	1	-	3	-	2
CO3	Familiar on iterative prototyping techniques for working out the details of the online interaction, Including software development tools and software environments.	1	1	3	1	-	-	-	1	-	-	1	-	Η	1	-
CO4	Designing of existing product into variety of attractive designed product and new interactive devices with low cost and ever more challenging	1	1	1	1	1	-	-	-	-	-	1	-	3	-	-
	Average	1	1	1.5	1	1	-	-	1	-	-	1	-	2.3	1.5	1.5

				Ele	ctiv	e										
	18CDI	26	- Na	nom	ater			hnol Outco						S	rogra: pecifi itcom	ic
	Course Outcomes123456789101112O1Understand processing techniques for (01)00100100110011000															3
CO1	Understand processing techniques for nanomaterials.	2	2	1	3	3	1	1	-	1	-	-	-	-	-	_
CO2	Knowledge about various properties of nano-materials and to optimize the methods for specific material application	1	1	2	1	-	1	1	-	2	1	1	-	1	2	-
CO3	Use various nano-fluids in the fields of engineering	2	2	1	2	3	1	1		2	1	1	_	_	_	_
CO4	Use of Nano particles for the health, ecological and environmental hazards	1	1	1	1	-	-	-	2	2	2	2	-	-	-	1
	Average	1.5	1.5	1.3	1.8	3	1	1	2	1.7	1.3	1.3	-	1	2	1

				Ele	ctiv	e										
	18CDE31 - Prod	ucti	vity	Ma	nage			d Re Outco		gine	erin	g		S	rograi pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	understand the need for change in organizations and be able to apply appropriate strategies to affect change in an appropriate manner		1	1	1	1	1	1	-	1	-	1	-	-	-	-
CO2	Creating a layout of a manufacturing department that integrates both production equipment and office accommodation	1	-	1	-	3	2	-	2	1	-	1	-	-	1	-
CO3	Use the techniques, skills, and modern engineering tools necessary for engineering practice	1	1	1	1	1	1	_	-	-	-	3	-	-	-	1
	Average	1.3	1.0	1	1.0	1.7	1.3	1.0	7	1.0	-	1.7	-	-	1.0	1.0

	18CDE	20	ጥከ			-	e 9 n	d Sh	o11e							
	18001		- 1 11	<u>201 y</u>			ram (S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Apply design principles and to create economically viable products.	2	1	3	3	3	1	1	-	1	-	1	-	-	-	-
CO2	Develop the ability to obtain the various deflections in plates and shells.	1	3	1	2	1	2	-	-	-	_	1	-	_	_	2
CO3	shells. Synthesize the principles of analysis		3	1	2	1	2	-	-	-	-	1	-	1	1	-
	Average		2.3	1.7	2.3	1.7	1.7	1	-	1	-	1	-	1	1	2

					ctiv											
	18CDE33 -	• Op	timi	zatio	on T		-	es in Outco		sign				S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Know the different optimization techniques.	1	1	1	1	1	-	-	1	1	-	1	-	-	-	-
CO2	Apply these techniques to solve static and dynamic problems of day to day applications	1	3	1	1	2	2	-	2	2	-	1	-	1	3	-
CO3	Develop the ability to obtain the optimal solution for engineering problems.	1	3	1	1	2	2	-	2	2	-	1	-	-	-	1
	Average	1	2.3	1	1	1.7	2	-	1.7	1.7	-	1	-	1	1	1

					ctiv											
	18CDE3	4 - C	com	puta	tion			Dyn Outco		cs				S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Ability to Write the mathematical representation of governing equation for fluid flow and heat transfer scenarios	3	1	1	2	1	-	-	-	-	-	1	-	-	-	3
CO2	Solve one dimensional and two- dimensional heat transfer problems	1	2	2	2	1	-	_	_	1	-	1	-	1	-	-
CO3	Ability to identify, formulate, and solve conduction type problems using appropriate CFD technique	1	3	1	3	1	-	-	1	2	-	1	-	3	2	-
CO4	Ability to understand different turbulence model and able to apply appropriate models to various practical applications.	1	1	1	1	1	-	-	-	-	-	1	-	-	1	1
	Average	1.5	1.8	1.3	2	1	-	-	1	1.5	-	1	-	2	1.5	2

					ctiv											
	18CDE35 - Com	iput	er In	itegi	rateo		ram (Sys	tem	s		S	ograi pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	It helps the students to get familiarized with the computer aided process planning, group technology, process planning and control and computer integrated manufacturing systems	1	1	-	2	1	2	1	_	1	_	1	_	3	2	3
CO2	The student shall be comfortable with using CAD/CAM systems with programming and operating of CNC machine tools	1	2	1	2	1	2	1	-	2	-	1	-	3	3	-
CO3	To apply the concept of computer aided planning and control	2	2	1	1	1	3	1	1	1	-	1	-	2	2	1
	aided planning and control Average		1.7	1	1.7	1	2.3	1	1	1.3	-	1	-	2.7	2.3	2

				Ele	ctiv	е										
	18CDE36 - I1	ndus	stria	l Rol	boti	cs ai	nd E	хреі	rt Sy	vster	ns					
						Prog	ram	Outco	omes					S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Identify a Robot for a specific application	3	1	1	-	1	1	1	-	-	-	1	-	-	-	_
CO2	Interface various Servo and hardware components with Controller based projects	1	2	2	-	1	3	1	-	2	-	1	-	-	-	2
CO3	Access the machine vision capabilities of the robot to select objects based upon shape, orientation and colour	1	1	-	3	-	-	1	-	2	-	1	-	-	2	-
CO4	Design and critically evaluate: a safe system in a robot cell	-	-	1	-	-	1	-	-	-	-	1	-	1	3	3
CO5	Implement and present a basic automation task with an industrial robot, including online and offline programming and evaluation of the results, based on a given specification	1	2	1	-	3	-	-	-	1	-	-	-	3	-	-
	Average	1.5	1.2	1.2	3	1.6	2	1	-	2.5	-	1	-	2.0	2.5	2.5

				Ele	ctiv	е										
	18CDE41 - Exp	erin	nent	al T	echi	niqu	es a	nd D	ata	Ana	lysis	5				
			_			Prog	ram (Outco	mes					S	rograi pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Develop an appropriate experimental research design for an engineering case study taking into account practical limitations.	2	2	2	3	3	1	-	-	1	-	1	-	1	2	1
CO2	Apply knowledge of statistical analysis to assess a hypothesis by selecting appropriate statistical tests and by correctly interpreting the results of these tests	2	2	1	2	1	-	-	-	-	-	1	-	3	1	-
CO3	Propose an appropriate statistical model for a given dataset and interpret the goodness of fit.	2	2	1	2	1	-	-	-	-	-	1	-	3	-	_
CO4	Optimize the experimental result and correlated with analytical data by using taughi method.	2	2	1	2	1	-	-	-	-	-	1	-	2	3	3
	Average	2	2	1.3	2.3	1.5	1	-	-	1	-	1	-	2.3	2.5	2

	1	901					.	-1-								
	پ	.801	<u>)</u> <u>6</u> 42	2 - C.	AD/	CAM Prog		Outco	omes					S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	To get familiarized with computer aided tools for various industrial applications which includes manufacturing, process planning, inspection, data management and reverse engineering.	2	3	2	2	1	2	2	1	2	_	1	_	3	2	2
CO2	To apply the concept of geometric modelling and create new objects.	2	2	2	2	-	2	2	1	3	1	1	-	3	3	2
CO3	To evaluate the principle of synthesis of curves and create new 3D Objects.	1	3	3	1	2	2	2	2	1	-	1	-	3	3	3
	of curves and create new 3D Objects. Average		2.7	2.3	1.7	1.5	2	2	1.3	2	1	1	-	3	2.7	2.3

				Ele	ctiv	е										
	18	CDE	243 -	Co	ntac	t Me	cha	nics								
						Prog	ram (Outco	omes					S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Gain knowledge about the couplings between normal- and tangential loads and deformations.	3	2	1	1	-	-	-	-	-	1	1	-	-	-	_
CO2	Understand the mechanism of elastic fracture and brittle fracture.	1	1	1	1	-	-	1	-	-	1	1	-	-	-	1
CO3	Understand the elastic problems with tangential, sliding or rolling contacts and plastic contact problem.	1	1	1	1	_	-	-	-	_	-	1	-	1	2	-
CO4	Applying the relations for thermo- elastic contact, contact of rough surfaces, adhesion.	1	2	1	1	-	-	-	-	-	-	1	-	1	-	1
	Average	1.5	1.5	1	1	-	-	1	-	-	1	1	-	1	2	1

				Ele	ctiv	е										
	18CDE4	4 - A	ldva	nceo	l Au	tom	otiv	e Sy	sten	ns						
						Prog	ram (Outco	omes					S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Apply design principles for manufacturing to create eco-friendly automobiles	2	1	3	3	2	1	_	_	1	1	-	-	-	3	-
CO2	Enhanced knowledge on automobile design and its innovation with greater concern towards environmental issues.	2	1	2	-	1	-	-	-	1	1	1	-	3	1	-
CO3	Apply the electronic technology in automotive, for improving performance or reduce cost	2	1	2	-	2	-	-	-	-	-	1	-	-	-	-
CO4	Apply the automotive electronics to control the engine in order to reduce the emission level	2	1	1	-	2	1	1	_	1	1	-	-	-	-	1
	Average	2	1	2	3	1.8	1	1	-	1	1	1	-	1	1	1

	18CDE45 - D	esig	n of		ctivo teria	-	ndli	ng E	quij	ome	nt					
						Prog	ram (Outco	omes					S	rogra: pecifi itcom	ic
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Describe the importance of proper material handling techniques and regarding hoisting and conveying equipment	2	1	2	2	1	1	1	-	-	1	1	-	1	-	-
CO2	List hazards associated with hoisting and conveying	1	1	3	2	1	1	2	1	1	3	1	-	-	1	-
CO3	Learn about various hoisting gear drives used in various applications.	1	2	1	1	3	3	1	-	-	1	1	-	-	-	2
	Average	1.3	1.3	2	1.7	1.7	1.7	1.3	1	1	1.7	1	-	1	1	2

	18CDE4	16 -	Plas		ctiv y an	-	etal	For	minį	g						
						Prog	ram (Outco	mes						Progra Specif Jutcon	ĩc
	Understand the stress and strain													1	2	3
CO1	Understand the stress and strain tensor field	2	1	2	2	1	1	1	_	-	1	1	_	-	-	-
CO2	Apply the concepts to evaluate the theory of plasticity	1	1	3	2	1	1	2	1	1	3	1	-	I	1	2
CO3	Formulate the concepts for plasticity and plastic deformation analysis	1	2	1	1	3	3	1	-	-	1	1	-	-	-	-
CO4	Recognize the various metal forming techniques	1	1	2	1	2	1	1	-	-	2	1	-	1	1	1
	Average	1.3	1.3	2	1.5	1.8	1.5	1.3	1	1	1.8	1	-	1	1	1.5

Elective																	
	18	CDE51 - Tribology in Design Program Outcomes												Program Specific Outcomes			
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	Understand friction, wear and lubrication	2	2	2	3	-	-	-	-	1	1	1	-	1	1	1	
CO2	Analyze properties of lubrication on hydrodynamic, hydrostatic, Elasto hydrodynamic condition	2	1	1	1	1	-	1	-	-	1	1	-	3	2	2	
СОЗ	Develop processes of lubrication in all regimes, Suggest an explanation to the cause of atribological failure	2	1	1	1	1	1	1	_	1	1	1	_	1	1	-	
CO4	Understand the friction phenomena and select a suitable lubricant for a specific application	1	1	1	1	1	1	1	-	-	1	1	-	1	-	_	
CO5	Understand and determine wear processes in contacts between metallic and non-metallic surfaces	1	1	3	1	1	-	1	-	-	1	1	-	1	-	-	
Average		1.6	1.2	1.6	1.4	1	1	1	-	1	1	1	-	1.4	1.3	1.5	

Elective																
	18CDE5	52 - Enterprise Resource Planning Program Outcomes										Program Specific Outcomes				
Course Outcomes		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Understand the risks and benefits of ERP	1	3	1	-	1	1	2	1	1	1	1	-	1	1	2
CO2	Understand the technologies needed for ERP implementation.	1	2	1	-	1	2	1	-	1	_	1	-	1	1	2
CO3	Understand the implementation process	1	2	2	1	1	2	2	1	2	1	1	-	1	1	-
CO4	Analyze the role of Consultants, Vendors and Employees.	-	1	2	-	2	2	1	2	1	-	1	-	3	2	-
CO5	Analyze the role of PLM, SCM and CRM in ERP.	1	1	1	1	1	1	1	1	1	-	1	-	3	2	-
Average		1	1.8	1.4	1	1.2	1.6	1.4	1	1.2	1	1	-	1.8	1.4	2